
NASA Contractor Report 187522

Uric] _ q

!33/_i OO260O_J

Structured Representation for Requirements
and Specifications

Gene Fisher

Deborah Frincke

Dave Wolber

University of California,

Davis, California

G. C. Cohen

Boeing Military Airplanes

Seattle, Washington

NASA Contract NAS1-18586

luly 1991

Natiomd Aeronautics and
Space Administration

Lmtilby Remreh Center
I'bimll_n, Virginia 23665-5225

Preface

This document was generated in support of NASA contract NASI-18586,

Design and Validation of Digital Flight Control Systems suitable for Fly-By-

Nire Applications, Task Assignment 2. Task 2 is associated with a formal

representation of requirements and specifications. In particular, this

document contains results associated with the development of a Wide-Spectrum

Requirements Specification Language (NSRSL) that can be used to express system

requirements and specifications in both stylized and formal forms. Included

with this development are prototype tools to support the specification

language. In addition a preliminary requirements specification methodology

based on the NSRSL has been developed. Lastly, the methodology has been

applied to an Advanced Subsonic Civil Transport Flight Control System.

The NASA technical monitor for this work is Sally Johnson of the NASA

Langley Research Center, Hampton, Virginia.

The work was accomplished at Boeing Military Airplanes,

Washington, and the University of California, Davis, California.

responsible for the work include:

Seattle,

Personnel

Boeing Military Airplanes:

D. Gangsaas, Responsible Manager

T. M. Richardson, Program Manager

G. C. Cohen, Principal Investigator

University of California:

Dr. Gene Fisher, Chief Researcher

Deborah Frincke, PhD Candidate

Dave Wolber, PhD Candidate

ii

Contents

1 Introduction

2

2.2

2.3
2.4
2.5

2.6

Overview of the Wide-Spectrum Requirements Specification Language

2.1 Underlying Pervasive Principles

Specifying Objects

Specifying Operations

Specifying Modu]es

Specifying Attribute Fields
Advanced Features

2.6.1

2.6.2

2.6.3

2.6.4

2.6.5

Classes

Name Qualification and Overloading

Names and Types

2

2

3

4

5

5

7

7

8

9

Multiple Inheritance 11

A Final Note on Inheritance and Specialization 11

3 Formalizing a WSRSL Specification 12

The

4.1

4.2

4.3

4.4

WSRSL Methodology 15
What is a "Requirement" 16

A Detailed Formalization Example 16

4.2.1 Verbatim Excerpt from the ASCT Document 17
4.2.2 Translation Rules 17

4.2.3 Formal Translations of Requirements 18

Rationale for the Use of a Wide-Spectrum Language 18

Auxiliary Knowledge Domains 19

5 WSRSL Prototype Tools 20

5.1 WSRSL Parser 20

5.2 WSRSL Browser 20

5.3 Dataflow Tool 26

References 27

A WSRSL Syntax 28

B Excerpts of ASCT in WSRSL 31

C Analysis of the Translation of ASCT into WSRSL 82

Ill

PR_gTr.;G P,_GE BLA.UI(NOT F:LlV!ED

List of Figures

1

2

3

4

5

6

Relationship between WSRSL and Revised Special 13
WSRSL Environment Components 21

Top-Level Browser 22

Module Text Browser 23

Module Graphic Browser 24

Creating a Hyperlink 25

iV

List of Tables

1 WSRSL Module Types 6

2 WSRSL Features and EHDM Equivalents 13

1 Introduction

This report describes our results for the project on the Structured Representation for Re-

quirements and Specifications. Our overall impression of the project is that it has been successful

in accomplishing the goals that were set out in the original proposal. To summarize our results,
we have:

• developed a Wide-Spectrum Requirements Specification Language (WSRSL) that can be

used to express system requirements and specifications in both stylized and formal forms

• developed prototype tools to support the specification language

• developed a preliminary requirements specification methodology based on our wide-spectrum

language

• applied the methodology to translate one third of the document "An Example of Re-

quirements for Advanced Subsonic Civil (ASCT) Flight Control System Using Structured

Techniques" [CM gl]

Our major contributions have been improvements in the organization and formality of the

ASCT document. The WSRSL provides the means to organize a requirements specification

in a modular fashion, and eliminate much of the informal prose that is found in documents

such as ASCT. Since WSRSL is a formal language, it can be formally analyzed for syntactic

correctness, completeness, and consistency. In addition, some aspects of semantic correctness

can be analyzed and verified.

Another significant contribution is the development of tools to permit a WSRSL document

to be viewed electronically. Electronic viewing is particularly useful in large documents, where

the linear medium of the printed page often hinders the reader from locating concepts of interest

and understanding the connectivity of the different document components. Our tools provide

a means to browse the document in hypertext style, and to view graphical dataflow diagrams

that depict the connectivity of the operations defined in a WSRSL document.

The remainder of the report describes our results in further detail. Section 2 presents an

overview of the Wide-Spectrum Requirements Specification Language (WSRSL). Section 3 de-

scribes the more formal aspects of WSRSL. Section 4 describes the requirements specification

methodology based on WSRSL. Section 5 describes the two tool prototypes -- the browser and
dataflow editor.

2 Overview of the Wide-Spectrum Requirements Specification Language

Our Wide-Spectrum Requirements Specification Language (WSRSL) is a hybrid of the fea-

tures found in several popular specification languages and systems. The basic features for

specifying the hierarchical structure of objects and operations are similar to features in such

languages as Revised Special [C* 86], SADT (Structured Analysis and Design Technique) [RS

77]], PSL (Problem Statement Language) [TH 77], and RSL (Requirements Specification Lan-

guage) [GMB 82].

The purpose of the language is to describe precisely the external structure of the objects

and operations for specifying aircraft systems. While languages such as SADT and PSL have

some good underlying concepts for how to structure a specification, they are notorious for a

lack of formality, making it difficult to be completely precise in a specification. Accordingly, the

WSRSL includes features for formal specification, as will be described in subsections below.

Using our WSRSL, a specification consists of two parts: (1) an o_ject-oriented part, and

(2) a Junction-oriented part. These two parts form two different views of the same system.

One view presents the system from the perspective of the objects (i.e., data), the other from

the perspective of the operations (i.e., functions). Neither view is the correct one - they both

convey the same meaning in different ways. Depending on the natural orientation of the system

being specified, one form of view may be the more natural form of specification. Specifically, for

the so-called "transaction-oriented" systems [YC 79], the object-oriented view is typically more

natural. Conversely, for the "transform-oriented _' systems [YC 79], the operation-oriented view

is typically the more natural.

Whichever is the more natural view, a specification should always contain both. In this way,

the two views provide a form of cross checking on specification consistency and completeness.

Something that may have been overlooked in the function-oriented view may show up naturally

in the object-oriented view, and vice versa.

2.1 Underlying Pervasive Principles

The WSRSL described here, as well as similar requirements languages such SADT and RSL.

share some common underlying principles. These principles are:

1. Entity/Relation Model- the specification universe is viewed as comprised of entities which

have well-defined relations to other entities in the specification universe. In particular,

there are two primary types of entities to consider - o_jects and operations.

2. Attribute/Value Pairs- in addition to relations to other entities, an entity may have zero

or more general attributes that describe further the entity's properties.

3. Hierarchy- the primary relation between entities of the same type is hierarch_t. That is, an

entity is composed hierarchically of subentities, which may in turn be further hierarchically

decomposed.

4. Four Composition Primitives- When an entity is decomposed into subentities, four specific
composition forms are used. These are:

(a) AND composition: an entity is composed as a heterogeneous collection of subentities

(b) OR composition: an entity is composed as a selected one o]a heterogeneous collection
of subentities

(c) repetitive composition: an entity is composed as a homogeneous collection of suben-
tities

(d) Recursive composition: entity/subentity hierarchical decomposition may be recursive;

i.e., a subentity may be the same as its (grand ...)parent entity(ies).

5. Basic Composition Modifiers - further constraints can be placed on composed collections

of subentities. Typical of such are the following:

(a) Ordered- formally, a partial orderin 9 relationship must be defined between subentities

(b) Duplicate Subentities- formally, an equivalence relationship must be defined between
subentities

(c) lndexaMe - an index key must be specified for subentities

8. Glass/Su_class/lnstance Composition - a secondary form of hierarchical relation is that of

class/instance. An entity class defines a generic entity form, i.e., a template. An entity

instance can then be defined as a more specialized 1 member of a class; the instance inherits

the attributes of the parent class of which it is a specialization, plus defines additional

instance-specific attributes. The class/instance hierarchy can have an arbitrary number

of levels; i.e., an instance of one class may be a class itself, in which class it is called a
subclass.

7. Object/Operation Duality- the primitive composition and relational forms apply equally

to both objects and operations. I.e., both objects and operations can be decomposed

hierarchically, with general attribute/value pairs, and in class/subclass hierarchies. Ob-

ject/operation duality manifests itself in interesting ways. as will be discussed in future

reports.

2.2 Specifying Objects

An object is specified in a fixed format showing its components and other attributes. The general
form is as follows2:

object name is

components: list of subobjects

operations: list of operations, includin 9 their argttment tyl_eS

[description: {free-form test}]

[example: {free-form text/graI_hics } l

[other attributes: Other useful information as appropriate]

end name

For example:

object Mission is

components: TaxiInOut and TakeOff and Climb and

Cruise and Descent and Approach and Landing

l a synonym for the class/subclass relation is 9eneralizatton/specializat,on

_boldface terms are keywords, italic terms are variables, optional terms are enclosed in square brackets [...]

operations:

Navigate: Mission -> TargetFlightPlan

•.. (additional operations) ...

description: {A Mission is the main object of the ASCT Flight Control

System. Its components represent each of the main phases of a

controlled flight }

end Mission

object TakeOff is

components: AccelerationPhase and RunwayDeparture

operations:

AccelerateToTakeOff: AirCraftState, SpeedControls -> AirCraftState

DepartRunway: AirCraftState, LiftOffControls -> AirCraftState

description: {The TakeOff phase of a Mission covers the period from

the completion of taxiing to the beginning of the climbing phase.}

end TakeOff

2.3 Specifying Operations

An operation specification is much like an object specification, in a fixed format of components

and other attributes. Here is the general form:

operation name is

components: list of su_overations

inputs: list of o_jects

outputs: list of o_jects

[description: {free-form text/graphics}]

[other attributes: Other useful information as a;propriate]

end name

For example:

operation PerformTakeOff is

components: Accelerate and Depart

inputs: AircraftState, SpeedControls

outputs: AircraftState

description: {The aircraft has received clear-to-depart signal from

the tower and proceeds to accelerate down the runway and depart.}

precondition: ClearToDepart = true and . . .

postcondition: AirCraftState = Climbing and...

location: Runway

agent: Pilot

instrument: SpeedControlDevice

end PerformTakeOff

2.4 Specifying Modules

The module is the WSRSL packaging construct. WSRSL modules serve precisely the same

purpose as modules in other command specification and programing languages, such as EHDM

[C* 86], Modula-2, Ada, and many others. The general form for a module is the following:

[module-type] module name is

[attribute declarations ...]

[im1_ort-etport declarations ... l

[state-rarla_le definitions ...]

[entity definitions ...]

[formal definitions ...]
end name

The addition of modules makes it possible to include state-variable definitions within a

WSRSL specification. State variables can be declared as any object type defined in the module.

These variables represent specific object instances that can be reasoned about using the theory

of states defined in Revised Special, as discussed in a later section of the report.

The entity definitions in a module are a collection of functionally-related object and oper-

ation definitions. The "functional relatedness" is not enforced by the language. Rather, the

specifier determines which entity definitions are sufficiently logically related so as to appear in

the same module. Modularization techniques have been discussed extensively in the literature

on specification and programming languages.

Modules also include formal definitions. These provide the fully formal specification of:

• operation preconditions and postconditions

• object equations

• module invariants

As described in the next subsection, each of these specification components is mapped to an

underlying Revised Special construct.

WSRSL documents can optionally be organized into several types of modules definition,

formal, link, data[low, implementation, and dislda_r These different types of modules serve the

same general purpose as the two-part modules in such languages as Modula-2 and Ada. Namely,
a single module can be subdivided into separate parts to further clarify modular structure. In

the two-part module schemes, the division is typically between definition and implementation

parts. The definition part holds the abstract specification and the implementation part defines

the concrete representations. This concept of multi-part module is extended in WSRSL to allow

for several additional parts, as outlined in Table 1.

The subdivision of a module into two or more of these parts is optional. That is, all of the

the information in the separate parts may be contained in a single module.

2.5 Specifying Attribute Fields

In the general formats shown above, objects and operations may contain user-defined fields

that specify other named attributes. Examples of user-defined attributes are the "agent", '%-
cation", and "instrument" fields shown in the definition of operation PerformTakeOff

Module

Part Contents

definition

formal

link

dataflow

implementation

display

object and operation definitions

optional separation of axioms and pre/post conds

textual specification of browser hyperlinks

(see Section 5 below)

textual specification of browser hyperlinks

(see Section 5 below)

a concrete implementation description (e.g., a

software program or hardware description)

textual specification of graphical representations

of entities (see proposal for follow-on project)

Table 1: WSRSL Module Types

The contents of these fields can be either free-form text or the names of other entities. The

free-form text is specified syntactically as a comment -- any text enclosed in braces "_" and "}".

User-defined attributes provide the means to systematically specify additional properties of an

object or operation. In the PerformTakeOff operation, for example, rather than having a single

lengthy description field that mentions agent, location, and instrument, these three attributes

are given names, to provide a more systematic style of description. Naming attribute fields is

particularly useful to provide descriptive consistency. Defining a specific set of attributes that

are shared by a class of entities more clearly describes the common characteristics of the class.

When the value of a user-defined attribute is an entity name, rather than a comment, a

formal relation is defined between entities. For example, in the Takeoff operation, the attribute

specification "agent: Pilot" establishes a formal relation agent-o] between operation Perform-

TakeOff and object Pilot. These relations can be used in the formal part of a requirements

specification to identify classes of objects by their relationships.

To allow user-defined attributes to be checked for consistency, each attribute must be ex-

plicitly declared at the top of the module in which it is used. For example, in order to use the

agent, instrument, and location attributes in the definitions of PerfomTakeOff and other oper-

ations, they must be declared as follows at the top of the module in which the PerformTakeOff

operation appears:

module FlyMission

operation field agent

operation field instrument

operation field location

°,.

end FlyMission

6

2.6 Advanced Features

2.6.1 Classes

An object or operation definition may be specified as a class. A class definition is a general

template for an object or operation, of which more specific instances can be declared. For

example,

object class Mission is

components: TaxiInOut and TakeOff and "Climb and Cruise

and Descent and Approach and Landing

description: {A generic Mission without consideration of special

circumstances, such as inclement weather or special cargo handling.}
end Mission

object ColdWeatherMissionhastance of Mission is

components: PreFlightDeicing and MidCourseFlightAdjustments

end ColdWeatherMission

object SpecialCargoMission instance of Mission is

components: PreFlightCargoCheck and MidFlightCargoCheck

and PreLandingCargoCheck

end SpecialCargoMission

This example specifies that the general class of all Missions has the same components from

TaxilnOut to Landing. Special instances of Missions are differentiated by additional Mission

phases, such as specialized pre/post flight checks. Each of the specialized instances of a Mission

inherits the generic Mission's components, plus adds specialized components such as PreFlight-

Deicing, MidCourseFlightAdjustments, etc. Similar forms of specialization could be specified for

further different forms of Mission. Note that in an instance definition, the inherited components

are not repeated - only the additional components are specified.

Operations are inherited along with components.

overloading, as discussed below. For example,

object class obj i is

components: a, b, c

ops: opl{a,b,c):objl

end obj i

Specialized operations are defined via

object obj2 instance of obj I is

components: d

ops: opl(a,b,c) : obj2

end obj 2

operation opl is

inputs: a,b, c

outputs: obj 1

end opl

operation opl is

inputs: a, b, c

outputs: obj 2

remark: signature of this specialized version of opl distinguishes

it from the opl with coarity of objl

end opl

2.6.2 Name Qualification and Overloading

In large specifications, there arises the common problem of name sl_ace conflicts. That is, it

may be natural or convenient to give the same name to two or more entities, when those entities

are part of another. For example, consider the following two object definitions

object Aircraft is

components: State

operations: . ..

ChangeState(State) -> State

end Aircraft

object Mission is

components: State

operations: ...

ChangeState(State) -> State

end Mission

tlere the two objects both have a component named "State", which is a natural name in

both cases. The potential problem is that the State object that is the component of an Aircraft

is probably quite different than the definition of the State object that is the component of a

Mission. In order to allow two different definitions of State, entity names may be explicitly

qualified with the name(s) of parent entity(ies). For example, in this case the two different
definitions for State would be defined as follows:

object Aircraft. State is

components: ...

operations: ...

end Aircraft. State

object Mission. State is

components: ...

operations: ...
• • •

end Mission. State

Here the names of the State objects being defined are disambiguated with the names of the

respective parent entities appearing as qualifying prefixes. In general, a qualifying prefix is of
the form

entity-name entity-name._ase-name

where each entity-name to the right of a "." must be a component of the entity immediately to

the left of the ".'. In this way, the "." is a name qualification that means "access component".

A similar problem arises with conflicts in operation names. For example, in the Aircraft and

Mission definitions above, both have an operation named "ChangeState". To avoid ambiguity

in the different definitions of the ChangeState operations, one could employ the same form

of name qualification as used for defining the two State objects. That is, define operation

Aircraft.ChangeState and Mission.ChangeState.

Another means to qualify operations definitions is to use overkadin 9. Overloading is the

means to disambiguate two operations of the same name based on the types of the inputs and

outputs of the operations. Consider the following definitions for two different ChangeState
functions:

operation ChangeState is

components: ...

inputs: Aircraft.State

outputs: Aircraft. State

description: {State change operation for Aircraft State.}

end ChangeState

operation ChangeState is

components: ...

inputs: Mission. State

outputs: Mission. State

description: {State change operation for Mission State.}

end ChangeState

Here, what distinguishes the two operations is not a difference in the name, but rather the

fact that each operation takes a different type of input and produces a different type of output.

In technical terms, the operation name "ChangeState" is overloaded, since the same name is

used for two different operations. In general, overloading can be used to define any two or more

operations with the same name, as long as at least one input or output is different among all
the definitions.

2.6.3 Names and Types

In the definitions shown thus far, the components of an entity have been shown as simple names.

In the Mission object, for example, components are TaxiInOut, TakeOff. etc. A more detailed

method to specie" components is to use a name:iyFe pair. For example.

9

object Mission is

components: TIO:

end Mission

TaxilnOut and TO: TakeOff and etc

Here, the name component of the name/type pair is a local subobject name by which the

component is known (the names are TIO and TO in this example). The type component is

the name of some other defined object, as in the previous examples (types in this example are

TaziInOut and TakeOj_). Local component names have two important uses.

One use for the name/type pair notation is for reference purposes within formal requirements;

this topic will be covered in a future report. The other use for name/type pairs is to enhance

the expressibility of the class hierarchy. Suppose, for example, we choose to specify that all

Missions have a TaxiInOut component, but it is the type of TaxiInOut that distinguishes the

different special Mission instances. In this case, we could define the following form of class:

object class Mission is

components: TIO:

end Mission

and TO : TakeOff and etc.

object NormalWeatherMission instance of Mission is

components: TIO: NormalTaxiInOut

end NormalWeatherMission

object ColdWeatherMission instance of Mission is

components: TIO: ColdWeatherTaxiInOut

end ColdWeatherMission

Here the Mission class specifies that all Missions can have a TaxiInOut phase, but that the

type of this phase is left blank. The type is then specified in specific Mission instances, as in

the ColdWeatherMission for example. Note that since ColdWeatherMission inherits all other

components from the parent class, these need not be respecified in the instance definition. Note

further that this is only an illustrative example. In this particular case, other Mission phases in

addition to TaxiInOut would probably be specialized differently.

A further example that illustrates a three-level subclass hierarchy is the following:

object class Aircraft is

components: Body and Engines: and WingStructure and...

description: {The most generic form of aircraft.}

end Aircraft

object class JetAircraft instance of Aircraft is

components: Engines : Jet and . . .

description: ,[The primary specialization of a jet aircraft is the

engine type. Other specializations include }

end JetAircraft

object Boeing737 instance of JetAircraft is

10

components:

description:

end Boeing737

whatever s?eci_c comI_onents sl_ecialize thi, particular alrcral_

2.6.4 Multiple Inheritance

It is sometimes useful to have a single instance inherit attributes from more than one parent

For example,

object class PassengerAircraft instance of Aircraft is

components: Seating and .

end PassengerAircraft

object Boeing737P instance of JetAircraft and PassengerAircraft is

components: .

description: _The 737 jet aircraft configured for passenger service.}

end Boeing737 P

The rule for multiple inheritance is that the instance inherits the union of the parent at-

tributes. In particular, if the parents have some common attributes, then the instance has only

a single version of the common attributes.

2.6.5 A Final Note on Inheritance and Specialization

Instances inherit components from a parent class, can add new components to those that are

inherited, and can s?ecialize parent components that are specified with a name but without a

type. Instances cannot however uninherit or override a component that is specified in the parent.

Uninherit would be mean that an instance could eliminate one or more parent components.

Override would mean that if a parent component were specified with both a name and a type,

that the type could be changed in the instance. Not all specification languages have this addi_ivity

restriction, but ours does for simplicity.

11

3 Formalizing a WSRSL Specification

The previous section of the report described what amounts to the ,tyllzed layer of WSRSL.

Specifying the basic objects and operations of a system provides a semi-formal definition. Fully

formal definitions for objects and operations are provided in three ways:

• Precondition, and posteondltlon, are specified for operations. The conditions are specified

as predicates on inputs and outputs. They define, respectively, formal conditions that

must be met before and after an operation is invoked.

• E_uatlons are specified for objects. The equations are specified as equalities between an

object's operations. They define operation relationships that formally describe an object's

behavior when it is operated upon.

• Module axioms are specified as predicates over any operation within a particular specifica-

tion module. They define invariants that must remain true over all operation invocations.

As described in the project proposal, our plan for the development of the stylized WSRSL

is to provide a formal linkage between the stylized language level and a fully formal language

level below. We have chosen Revised Special, from the EHDM system, as our underlying formal

language. As our definition of the WSRSL has been refined, we have clarified the conceptual

relationships between the two language levels, and improved the formal connections.

• parameterized modules

• syntactic overloading

• support for state objects and operations

In a similar vein, the stylized WSRSL provides the following syntactic and semantic enrich-

ments over Revised Special:

• object constructor primitives

• classes and inheritance

• overall simplified syntax

The conceptual relationship between WSRSL and Revised Special is analogous to the re-

lationship between Revised Special and multi-sorted higher-order logic (see Figure 1). In the

Revised Special language definition manual [C* 86], the authors indicate that Revised Special

provides a number of syntactic and semantic "enrichments" over standard higher-order logic.

In the same way that all the constructs of Revised Special can be formally represented in

higher-order logic, so can all the constructs of the WSRSL be formally represented in Revised

Special. Hence the WSRSL itself is founded ultimately in formal logic. This is what will allow

formal verification of and reasoning about WSRSL specifications.

While the formal layer of WSRSL is based on EHDM, the syntax of the EHDM-derived

constructs is part of WSRSL. That is, specifiers using WSRSL do not ever use EHDM directly,

but the formal layer of WSRSL.

Due to a later-than-expected arrival of EHDM, our work on WSRSL/EHDM interface has

been somewhat delayed this year. We have formulated an initial set of relationships between

major WSRSL constructs and their equivalent representations in EHDM. Table 1 summarizes

these relationships. A discussion of the table contents follows.

12

Stylized WSRSL

____'""_- Syntactic and

Revised Special Semantic

_ Enrichments

Higher-Order Logic

Figure 1' Relationship between WSRSL and Revised Special

WSRSL EHDM

Construct Construct

module

object

and component

or component

list component

equations

axioms

operation

operation signature

inputs/outputs

pre/post conditions

predicates

other attributes

class/instance

module

type
selector function

tagged selector function

type

definitional axioms

axioms

function

function signature

function arguments

hoare formulae

expressions

comments

suitably named instances

Table 2: WSRSL Features and EHDM Equivalents

13

The primary packagingconstruct in both WSRSL and EHDM is the module. Modules

contain the major definitions in both languages.

One of the more significant enrichments of WSRSL over EHDM are the constructs for speci-

fying object components. In EHDM, as in other similar formal specification languages, tyl_es are

simply identifiers, representing arbitrary sets of objects of the same type. Other than functions

defined on types, the typed objects themselves have no structure. Hence, the WSRSL object

composition primitives must be represented in EHDM as explicit functions. There is in fact a

reasonably standard form of composite object representation in strongly-typed formal specifi-

cation languages. Viz., the components are represented by defining explicit selector functions.

For example, if object A has components al:tl and a2:t2 and a3:t3, then the formal EHDM

representation defines three selector functions with signatures:

Setect_ai: function [A-> ti]

fori= 1 to 3.

Selector functions for or-composed WSRSL objects are the same as for and-composed ob-

jects, with the addition of a tag function that holds the current object type. The list-composed

WSRSL objects require no selector functions, since list composition represents the basic zero-

or-more type mechanism standard in EHDM.

Object equations in WSRSL are a restricted form of axioms in EHDM. The restriction is that

object equations are in the form of abstract datatype algebraic equations, which are syntactically

a proper subset of EHDM axioms.

WSRSL operations and EHDM functions are essentially the same constructs, except for

minor syntactic differences, and the fact that WSRSL operations can be multi-valued. Multi-

valued functions are typically defined as single-valued functions that return list-valued objects,

which can be readily accomplished in EHDM.

WSRSL pre/post conditions will map reasonably directly to EHDM hoare formulae. De-

termining the precise details of the mapping requires further study, but there are no major

conceptual problems.

All predicates used in WSRSL specifications, including pre/post conditions and module

invariants, are essentially the same as EHDM expressions, with only minor syntactic variations.

WSRSL uses EHDM's ASCII-text representations for quantifiers and other non-ASCII logical

operators. Vve will strive to keep WSRSL and EHDM expression syntax as close as possible,

changing only where clarity at the stylized level would be compromised by using EHDM syntax

directly.

As described in Section 2, WSRSL allows the definition of an arbitrary number of general-

purpose attributes for objects and operations. Semantically in WSRSL, these user-defined at-

tributes are just comments, and hence their representation in EHDM as comments is natural.

The final major enrichment of WSRSL over EHDM is the class/instance inheritance con-

struct. Inheritance does not add any additional logical power to WSRSL, just convenience of

definition. In EHDM, parameterized modules and suitable instance naming can be used to rep-

resent WSRSL-style inheritance. The precise form of the translation requires further study. We

propose to complete this study, and fully define the WSRSL-to-EHDM translation in the coming

year.

14

4 The WSRSL Methodology

The methodology described here was developed in conjunction with the analysis of ASCT for

the purposes of translating it into WSRSL. The major analysis involves the codification of the

objects and operations. This is essentially the "domain analysis" process described by Neighbors

[Neig 84] and others, wherein domain experts identify objects and operations as the primary

entities into which a requirements specification is decomposed. In the case of a requirements

documentation such as ASCT, many of the objects and operations are derived directly from the

dataflow diagrams.

In conjunction with object/operation decomposition, other properties of the requirements

specification must be formalized using the more formal, EHDM-based layer of ASCT. Such

analysis involves the translation of often inconsistent natural language statements into the target

formal language. Pursuant to this translation, our methodology uses some English-to-Spec-

Language transformations that guide a human analyst. We have formulated an initial list of

such transformations, as discussed in the next section of the report.

One of our fundamental propositions of this project is that in the future, requirements

specification should be done initially using a formalized language, not with free-form natural

language as in much of ASCT. This is in fact an old proposition, e.g., from the SADT days, but

a proposition that is as valid as ever.

Given for this project that we did in fact have an existing document from which to work, our

methodology contains a number of steps that would not be necessary if the requirements method-

ology had been developed from the start in WSRSL. A summary of the specific methodology

steps for analyzing ASCT is the following:

• Deducing objects and operations from DFDs

• Deducing new objects and operations from prose requirements descriptions

• Deducing object structure from prose requirements descriptions

• Deducing modules where none existed

• Deducing formal requirements from prose

• Identi_'ing meta-requirements that specify how requirements are to be tested, validated.
or verified

• Identifying auxiliary knowledge domains

• Removing superfluous prose

Starting from ASCT, the first step in identi_'ing objects and operations is performed by

inspection of the dataflow diagrams (DFDs). Basically, each DFD transform is an operation

and each flow is an object. One of the fundamental deficiencies of system analysis based purely

on DFDs is that object descriptions are underemphasized. That is, DFD-based analysis tends

to present predominantly an operation-oriented view of a system. As pointed out in the intro-

ductory discussion in Section 2 of the report, a requirements specification should present gosh

operation-oriented and object-oriented views.

In terms of analyzing ASCT, what is necessary is to deduce object structure from the text

portions of the document, since it is not defined explicitly in the DFDs. Our analysis in this

area revealed that a number of important objects, such as the aircraft and crew, were weakly

15

defined in ASCT. These weaknesses have been addressed by specifying Aircraft and Crew as

two important object-oriented modules in the WSRSL specification.

In addition to deducing the basic object/operation structure of ASCT, we needed to deduce

an appropriate modular structure. Decomposing any specification into modules is always a

partly qualitative process; there is rarely a single "best" modularization. The ASCT modules

that we chose are based largely on the functional organization of the DFDs, with the addition

of the above-mentioned object-oriented modules.

Once the DFDs have been analyzed and modules have been defined, the further refinement of

objects and operations is carried out by analysis of the prose text. Also, the formal specification

of requirements is carried out by prose analysis. The subsections that follow describe the further

details of these analyses.

4.1 What is a "Requirement"

In the discussion to this point, we have not clearly delineated the distinction between "re-

quirements" and "specification". By choosing a wide-spectrum approach to requirements spec-

ification, our position is that the distinction is not clear cut. Systems described in WSRSL

contain aspects of both requirements and specification.

Given that we want working definitions for the terms, we define them as follows:

• A Sl_eCification is the basic object/operation decomposition of a system.

• A requirement is some verifiable statement made about an object or operation.

As described in Section 3, there are three forms in which to express verifiable statements

about an object or operation: oI_eration 1_re- and I_OSt-conditions, o_ject equations, and module

axioms. Hence. in WSRSL, a "requirement" is formally one of these three forms of statement.

From a practical standpoint, this distinction is not all that useful, particular when translating

a prose document such as ASCT. In almost all cases, ASCT "requirements" are expressed as a

combination of object/operation descriptions and formal statements. The point is that unless

one has defined an entity to which a "requirement" refers, the "requirement" cannot be stated.

A tenet of the WSRSL methodology is that requirements should be developed in stylized

form first, followed by formalization. In the WSRSL translation of ASCT, this is accomplished

by defining operation attributes that contain the informal prose description of requirements. For

example, operation fields such as "CMF'; and "CAB" are used to state the informal descriptions

of requirements for "Control Mission Flight" and "Control Aerodynamic Braking." Additional

comments surrounding the formal statement of the requirements link to the informal description.

In addition, the hypertext linking facility of the WSRSL browser is used to define these links

formally. This form of linking is described in detail in Section 5 below.

4.2 A Detailed Formalization Example

This subsection presents a sample of the kind of formalization that must be conducted in

order to translate requirements such as they are stated in ASCT into a formalized form. As a

relatively self-contained example, we present the formalization for the Spiral Mode requirements

stated on page 103 of ASCT. First the requirements are reprinted verbatim as they appear in

ASCT. Then a set of transformation guidelines is presented. Finally, the requirements are st ated

in fully formal form, as they would appear in the context of a complete WSRSL requirements

specification document.

16

4.2.1 Verbatim Excerpt from the ASCT Document

Spiral Mode (U.A.S.4)

a) If unstable, the spiral mode time to double amplitude shall be no less

than 20 seconds at speeds from 1.2 VSI to VFC/MFC. (BCAR, D2-8,2 -

Conventional Control)

b) The airplane characteristics shall not exhibit coupled roll-spiral mode in

response to the pilot roll commands. (MIL-F-8785C 3.3.1.4 - Conventional

Control)

c) Minimum acceptable: the spiral mode time to double amplitude shall be

greater than 4 seconds (MIL -F08785C 3.3.1.3 - Conventional Control)

4.2.2 Translation Rules

The semi-formal English prose used to state requirements in this document excerpt is typ-

ical of that found throughout ASCT. In formalizing such requirements, a number of common

transformation rules are needed. It is our intention to categorize such rules for the purposes

of an organized translation process. However, as stated in the original proposal, automation of

such transformation rules is well beyond the scope of this project.

For the task at hand, viz., translating ASCT, the benefit of a transformation catalog can

be great, given that many of the transformations are reusable. Ultimately, however, the use of

such catalogs should diminish, if not disappear altogether, since requirements specifications will

not be developed in a form such as ASCT, but rather developed initially using the WSRSL.

eliminating the need for the style of ASCT translation we are now conducting.

Excerpt-Specific Transformation Rules

"unstable" ==> flane.staMe = [alse

"at all speeds from 1.2 \"SI to VFC/MVC.'; ==> V vei: 1.2VS1 < vel <_ VFC/MFC

"airplane characteristics" == > plane.s_a_e

"coupled" ==> a global state var or a component of plane.state

"pilot roll control commands" ==> a class or module of commands

"the spiral mode time to double amplitude" ==>

if Aircraft.State.Mode = "Spiral" and Aircraft.State,Time = t and

Aircraft.State.Amplitude = a then

some quantification over 5" Aircraft.State.Amplitude rel 2 * a

General Natural Language Transformation Rules

"at <range>" ==> V x in <range>

"in response to" ==> a postcondition of some operation invoked in the same sentence

"minimum acceptable" ==> typically a no-op

"shall", "must" ==> a condition must obtain (i.e., become true)

" "shall with probability" ==> a condition must obtain with given probability

17

"should"==> a conditionwill obtainif it doesnot negatesome"shall"
"exhibit" ==> -

"command" ==> operation

"commands" ==> operation class

"coupled (with)" ==> and (context dependent)

4.2.3 Formal Translations of Requirements

Given the above translation rules, the following are the resultant fully formal statements of

the three "Spiral Mode" requirements:

a) if Aircraft.State = Unstable then

if Aircraft. State.Mode = ''Spiral" and Aircraft. State. Time = t and

Aircraft. State.Amplitude = a and

1.2 * VSI <= Aircraft. State.Speed <= VFC/MFC then

exists t <= tl <= t+20 : Aircraft.State.Amplitude = 2 * a

b) module PilotCommands

operation RollControl

postcondition: Aircraft.State.Mode -= ''CoupledRollSpiral"

end RollControl

c) forall s in Aircraft.State :

if s.Mode = ''Spiral" and s.Time = t and s.Amplitude = a

forall t <= tl <= t÷4 :

if s.Time = tl then s.Amplitude < 2 * a

4.3 Rationale for the Use of a Wide-Spectrum Language

In the original project proposal, we indicated that our requirements specification methodol-

ogy would be divided into four phases: Stylized Requirements Analysis, Stylized Specification,

Formal Requirements Analysis, and Formal Specification. In the course of our ASCT analysis,

we have come to believe that these phases should be more tightly integrated than originally

planned. In particular, rather than have four distinct tiers of stylized and formal requirements

and specification languages, our initial work has led us to the development of the single wide

spectrum requirements/specification language that allows the analyst to gracefully refine re-

quirements into specifications and to gracefully add formal components to an initially informal

document. The notion of wide spectrum languages has been gaining favor among practitioners

and researchers in software engineering.

The use of a wide spectrum language does not mean that we will abandon the notion of the

separate phases, just that the vehicle for expressing the phases allows inter-phase integration

to be readily accomplished. Different audiences of a full wide-spectrum document will view it

through different filters. For example, a high-level management audience will view only those

aspects of the document that are appropriate to the management perspective.

18

4.4 Auxiliary Knowledge Domains

At the outset of this project, we recognized the need for the representation of domain knowl-

edge in a formal requirements specification. We have subsequently observed that in addition to

specific domain knowledge, such as is required to analyze aircraft missions, we need to represent

auxiliary knowledge domains. Such domains should be organized in a modular form, consistent

with the other portions of the requirements specification document.

Two important auxiliary knowledge domains that we have so far identified are Timing and

Statistics. The former is used to formally specify system timing requirements. The latter is

necessary to formally specify requirements of a probabilistic or statistical nature. It is not the

intent to specify such modules fully for this project. We will identify the auxiliary knowledge
modules necessary to obtain a fully formal result and include a small number of objects and

operations that would inhabit such modules. Detailed specification of such modules is beyond

the scope of this project.

19

5 WSRSL Prototype Tools

An important adjunct to any formal language is a computer-based environment. Researchers

in software engineering have recognized this fact for a number of years. Generally speaking, a

language environment includes a number of tools to edit and analyze documents expressed in

the subject language.

Figure 2 depicts the components of an overall environment for WSRSL. During this year of

the project, we have built prototypes for three of these environment components: the Parser,

Browser, and Dataflow Editor. These prototypes are described in the following three subsections.

In the coming year, we propose to develop the other two environment components: the Interface
Generator and the Verifier.

5.1 WSRSL Parser

In order for WSRSL specifications to be formally checked, a computer-based language trans-

lator, i.e., a parser, must be developed. Our prototype parser has the following features:

• performs complete syntactic analysis

• performs specification type checking to ensure syntactically complete and consistent defi-
nitions

• is integrated within the framework of a general-purpose system development environment
called Blend

The syntactic analysis and type checking features of the WSRSL parser are critical to ensur-

ing correct specifications. Further, the syntactic analyzer produces a formal internal form for a

specification that can be more readily mapped to the underlying Revised Special level.

Integrating the parser within the Blend environment makes available a number of environ-
ment tools that has facilitated the development of the WSRSL browser described in the next

section of the report. Blend integration will also facilitate the development of specification

traceability tools, through which the objects and operations at the requirements specification

level can be traced to their corresponding data and functions at the design and implementation

levels. We hope to develop such additional tools in the future.

5.2 WSRSL Browser

The major features of the WSRSL browser are:

• Multi-window, menu-based interface (running under X Windows)

• Mixed text and graphical browsing capabilities

• Generalized hyper-object navigation

A sample screen for the top-level browser window is shown in Figure 3. This level of the

browser provides an overall "roadmap" for the specification. The screen is divided into two

panes. The Left pane contains an object roadmap and the right pane an operation roadmap.

The roadmaps show the hierarchical structure of each of the entities defined in one or more

specification modules. The module boundaries are shown as dashed boxes surrounding the

objects and operations contained in the modules.

2O

Structured

Requiremenls
Specification

Checked

User
Commands

Texl

Browser &
Editor

Texzual

Req Spec.
Display

Dataflow
irowser &

Editor

Graphical

Dataflow Diagram
Display

lrt t erf _e e
Generator &

Protolyper

Graphical
User [nlerface

Display

Verifier
Verificauon

Results

Figure 2: WSRSL Environment Components

21

@

ii!iiii!iiiii
!:!:!_i_ii_I

i!ii!_!ii!ii

ii!_ii

!ii!

i!i;i_

i_i:ii_ii!

i iiii,li!il

HH'

File Edit Objs Ops Modules

Objects Roadmap

Mission

I

I Missi(
i

I
I

_ 'rax± InOut Takeoff Climb Crui
i
i

AircraftState

I i
| AircraftState i

1 L
I t
i Altitude Position FuelLevel i

i t
I i

I i
I i

I |
i Altitude = numeric i

i i

i

i
i Position

|
I
i
|
I
i
i
i
|
i
|
I

@!

Longitude Lattitude

FuelLevel = numeric

Iii¸¸:̧i!! i

Browse Optior

Operations Roadmap

Mission

i
i TaxiOut

i

i
i

i
i
i

i PerformTakeOff
i

i
I
i Accelerate Depart

i
i

i
|

i
i
|

i ClimbOut
i
|

i
i

|
|

|
i Cruise

i
I

i Level Adjust Avoid
i

i

i

i

i

i

i
i

4

ii_!:!ii:!

iii!iii!_

|

i liii

i

I
i
I

I
I !:

i :
i
I

!
|

i
l

l
|

| :::

i
!:

| :::

|

| : ::

i
! [:
!
I I.

I

| i:::
|

l

i

i
I
i _

OI I 1 _

Figure 3: Top-Level Browser

22

File Edit Font Browse Execute Option

object AircraftState is

components: Altitude and Position and FuelLevel

operations: SaveState, RecoverState, EmptyState

end

object Altitude = numeric

object Position is

components: Longitude and Lattitude

operations: ReportPos
end

object FuelLevel = numeric

operation SaveState

in: StateHistory,

out: StateList

end

AircraftState

operation RecoverState

in: StateHistory

t

ii?

<

m

4

Figure 4: Module Text Browser

Since a specification may contain a large number of entity definitions, the browser provides

the means to conveniently navigate through a large collection of definitions. First, the object

and operation roadmap windows are scrollable in all directions, allowing the user to focus on

specific entity definitions. Three menu entries on the top of the browser window allow navigation

by selecting an entity by name:

• The Modules menu contains a checklist of modules that are currently loaded

• The Objs menu provides an alphabetic list of objects by name

• The O/,s menu provides an alphabetic list of operations by name

Checking a module name in the Modules list causes the names of all the module's objects and

operations to appear on the Objs and O;s lists. Selectively checking and unchecking names

on the Modules list allows the length of the Objs and O/_s lists to be controlled. (Clearly, an

alphabetic list of hundreds or even thousands of entity names would be impractical to use.)

Selecting a name from the Objs or Ops lists causes the roadmap display to scroll to the selected

name.

Figure 4 shows a sample module text browser. This form of browser window presents the

next level of detail in a specification. The window contains the scrollable text of the full mod-

ule specification in the WSRSL. A textual module browser appears when the user selects a

specific module in one of the roadmap windows and executes the 'ZoomIn" command on the

top-level Browse menu selection. Within a text browser, users may navigate by direct scrolling.

or searching for specific entity definitions by name.

23

® (9 ® (9

Figure 5: Module Graphic Browser

Figure 5 shows a sample module graphic browser. Figure 5 shows the same module as shown

in Figure 4, but here in graphical form. Each type of object and operation have a standard

graphical view. Hierarchical object nesting is shown as graphically nested objects. Operations

are shown as labeled buttons.

An important feature of the browser is the linkage of the textual and graphical views. Both

views present exactly the same module structure, just in different physical forms. Further, edit-

ing either view automatically updates the other. This strong connection is made possible by the

integration of the WSRSL language translator within the framework of the Blend environment,

as described earlier in the report.

At the current stage of environment development, the text browser is a usable prototype.

The graphical views have only been prototyped in very preliminary form. We hope to continue

refinement of the text browser, and development of the graphical browser in the coming year.

The WSRSL browser has a hyI_eriexi linkin 9 feature. Hypertext browsing allows "electronic

footnotes" to appear in documents. To follow a footnote, the user clicks a noted spot on the

screen, whereupon a new window appears with the footnote information. Hyper-links are more

general than text-based footnotes in that any text or graphic object appearing in a window

can have one or more links to one or more other objects. The WSRSL hypertext features are

comparable to similar features found in other hypertext systems, including Apple's HyperCard.

Browser users can create and follow hyperlinks by selecting from the Browse menu, which

has the following entries:

• Create Link

• Follow Link

• Show Links

• Remove Link

The 'Create Link' selection prompts the user with the dialogue box shown in Figure 6

24

Goto Destination Object
then fill in info below

Source Entity Name:

Destination Entity Name

Link Name :

Two-Way? _ _

oK] CANCEL J

Figure 6: Creating a Hyperlink

The 'Follow Link' selection provides a menu of all linked entities available from current screen

context, and allows the user to select the link to follow. When the 'Follow Link' selection is made,

the screen is updated to contain the definition of the entity on the end of the followed link. The

'Show Links" selection highlights all objects in current window from which links emanate. It is

noted that many-to-one and one-to-many links are definable, providing a very general navigation

facility.

A number of basic link types are built-in to the browser, based on the hierarchical structure

of a specification and the temporal browsing history. These buih-in links are:

• Next - goto the next entity defined in the module

• Prey - goto the previous entity defined in the module

• First - goto the first entity defined in the module

• Last - goto the last entity defined in the module

e Up... - goto the parent entity of which the current entity is component

• Down... - goto the first child (i.e., component) of the current entity

• Back - goto previously browsed node

• Root - goto top-level module

• Goto... - goto a specific entity by name

25

5.3 Dataflow Tool

The dataflow browser includes features now common in several software engineering tools,

including the one used to develop the original ASCT dataflow diagrams (DFDs). These features

include:

• basic DFD node/arc creation

• node/arc labeling

• arc rubber banding when nodes are moved

• diagram leveling

• ability to save/load a textual version of a displayed DFD

The major improvement of our DFD browser over other comparable tools will be its full inte-

gration in the WSRSL environment. This will allow requirements specifications to be viewed in

textual form, the ,tructural graphical form described in last quarter's report, and the Junctional

graphical form of a DFD. Integration of the DFD tool with the WSRSL browser will also mean

that hyper-object navigation features will be available during DFD browsing.

26

References

[CM 91] G. C. Cohen, R. E. McLees, "An Example of Requirements for Advanced Subsonic

Civil Transport (ASCT) Flight Control System Using Structured Techniques," NASA

Contractor Report 187256, 1991.

[C* 86] J. S. Crow, et ai., "SRI Specification and Verification System, Preliminary Definition

of the Revised Special Specification Language, Version 3.0," SRI Project 5725, 75 pp.,

May 1986.

[GMB 82] S. J. Greenspan, J. Myiopoulos, and A. Borgida, "Capturing More World Knowl-

edge in the Requirements Specification," Proceedings of the Sixth International

Conference on Software Engineering, pp. 225-234, 1982.

[Neig 8,I] J. M. Neighbors, "The Draco Approach to Constructing Software from Reusable Com-

ponents" IEEE Transactions On Software Engineering, SE-10,5, pp. 564-574.

September 1984.

[RS 77] D. T. Ross, K. E. Schoman, "Structured Analysis for Requirements Definition." IEEE

Transactions on Software Engineering, SE-3, 1, pp. 6-15, January 1977.

[TH 77] D. Teichroew, E. A. Hershey, "PSL/PSA: A Computer-Aided Technique for Struc-

tured Documentation and Analysis of Information Processing Systems," IEEE

Transactions on Software Engineering, SE-3, 1, pp. 41-48, January 1977.

[YC 79] E. Yourdon, L. L. Constantine, Structured Design, Prentice-Hall, 1979.

27

A WSRSL Syntax

<spec> --, spec <spec name> <entity spec list> <formal part> end <spec name ender> ';'

<entity spec list> --, _ <entity spec> ';' ... }

<entity spec> --_ <object spec> I <operation spec>

<object spec> ---* <obj symbol> [class] <obj name> [instance] is <obj body> end <obj name ender:

<operation spec> _ <op symbol> [class] <op name> [instance] is <op body> end <op name ender

instance _ instance of [<class name> ...]

<obj body> _ '=' <obj expr> I components ops _ <obj attributes> ';' ... }

<op body> ---* components inputs outputs _ <op attributes> ';' ... }

<components> --* <components symbol> ':' <components spec>

<components spec> ---*

empty [

<components spec> <comp op> <components spec> t

<prefix list op> <components spec> I

<components spec> <postfix list op> I

<name type pair> I

name I

'(' <components spec> ')'

<comp op> --_ <and op> I <or op>

<and op> --_ and [",'

<or op> _ or I '1'

<prefix list op> _ list I list of I collection I collection of

<postfix list op> _ '*'

<ops> _ <ops symbol> ':' [<op signature> , ...]

<inputs> ---* <in symbol> ':' _ <init name type pair> , .. }

<outputs> ---* <out symbol> ':' .{ <init name type pair> ... }

<op signature> ---* <op name> ':" <op parms>

<op parms> --* empty [-[<obj name> '," ... } '- >' {<obj name> ',' ...}

<obj attribute> --* id ':' comment

<obj attribute> --* id ":' comment

<name type pair> ---* name ':' <obj name>

<init name type pair> ---* <name type pair>]

<name type pair> ':=' <obj expr>

<obj expr> _ <obj atom> I'[' <obj expr> ',' <obj atom> ']'

<obj atom> ---, string I integer [number]boolean I nil <var name>

<formal part> ---* vars conditions equations

<vars> _ { <var decl> ';' ... }

<var decl> ---_<ar symbol> <var name list> ':' <obj name>

<conditions> ---, conditions .[<pre post conds> ':' ... }

<pre post conds> --* <op symbol> <op signature> precond postcond

<preeond> --* <pre symbol> ':' predicate

<postcond> _ <post symbol> ':' predicate

<predicate>

predicate <pred bin op> <rel expr> [

28

<predpreop> predicateI
if predicatethen predicate[
if predicatethen predicateelsepredicateI
forall <vat namelist> ':' predicate1
there exists <var namelist> ':' predicateI
exists <var namelist> ':' predicateI
<rel expr>

<rel expr> --,

<rel expr> <rel bin op> <arith expr> t

<arith expr>

<arith expr> ---,

<arith expr> <arith bin op> <functional expr> I

<arith pre op> <arith expr> I

<functional expr>

<functional expr> --,

<var name> I

<op name> '(',{ predicate ',' ... } ')'t

'(' predicate ')'

<pred bin op> ---, and I or l in I implies

<pred pre op> ---* not

<relbinop>_'='l'<'l'>'l'='l'<='{'>='t in

<arith bin op> _ '+'l'-'t'*'l'/']div [rood

<arith pre op> ---+ '+' t '-'

<equations> --+ ,{ equation ';' ... }

<equation> _ <eq symbol> lhs '==' rhs

<lhs> _ <functional expr>

<rhs> _ predicate

<name> --_ identifier

<spec name> ---* identifier

<spec name ender> ---* empty I identifier

<class name> ---, identifier

<obj name> ---* identifier

<obj name ender> ---, empty I identifier

<op name> _ identifier

<op name ender> ---, empty lidentifier

<vat name> _ identifier

<obj symbol> ---, object I obj

<op symbol> ---, operation Iop

<components symbol> _ components I components

<ops symbol> --, operations I ops

<in symbol> --* inputs l in

<out symbol> _ outputs I out

<vat symbol> ---, variable t var

<e.q symbol> ---, equation I eq

29

<pre symbol> _ precondition [pre

<post symbol> -_ postcondition I post

<identifier> ---, <letter> { <letter> I <digit> ... }

<string> --, "' { <any character> ... }

<integer> ---, { digit ... }

<number> ---, integer '.' integer

<boolean> ---, true I false

<comment> ---, '{'{ <any character> ... } '}'

<any character> --, any legal lexical characfer

<empty> --_

30

B Excerpts of ASCT in WSRSL

* FlyMission is the top-level module of the system. It is derived from the

* material on ASCT Pages 9-15.

module FlyMission is { from pg 13 }

import Navigate, ControlMissionFlight;

export Mission, TargetFlightPath, ActualFlightPath, ExternalForcesOnActuator;

object Mission is

components: TaxiInOut and TakeOff and Climb and Cruise

and Descent and Approach and Landing and AltitudeRange and State

operations:

Navigate: Mission -> TargetFlightPlan

There should be additional operatins that are no_ explicitly specified

in ASCT.}

description:

Definition of particular flight mission from which the target flight

path can be generated (ASCT pg. 13). A Mission is the main object of the

ASCT Flight Control System. Its first seven components represent each of

the main segments of a controlled flight (ASCT pg. 15). The last two

components represent the altitudes that may be attained during a mission

(from 0 to MaxAltitude) and the global states of the mission.}

end Mission;

object Mission. State is

components:

OP: OperatingProcedures;

FP: FlightPlan;

FE: FlightEnvelope;

operations: ;

description: ;

end Mission. State;

{**** Mission Segments (pg. 15) ****}

{** These three field definitions are from Table 1 on page 15. **}

object field control action;

object field driver;

object field control_system requirement;

object class MissionSegment is

components: AltitudeRange;

31

description:

{ A generic mission phase. Only identified component from ASCT is

altitude range, but presumably there should be more. };

end MissionSegment;

object TaxilnTaxiOut instance of MissionSegment is

components: MoveFromTerminalPhase and AltitudeRange;

operations: ;

control_action: { Move from passenger terminal to runway. };

driver: { Terrain and obstacle avoidance. };

control_system_requirement: {Speed control, nosewheel steering.};

end TaxilnTaxiOut;

object TakeOff instance of MissionSegment is

components: RunwayAcceleration and RunwayDeparture and AltitudeRange

operations:

AccelerateToTakeOff: AircraftState, SpeedControls -> AircraftState

DepartRunway: AircraftState, LiftOffControls -> AircraftState;

control_action:

{ Accelerate to takeoff speed and depart runway. }

driver:

{ Runway length, thrust limits, crosswind conditions };

control_system_requirement:

{ Set height lift, set takeoff trim, thrust setting, nosewheel steeriing,

engine out augmentation, on ground braking, stall angle of atack warning,

manual trajectory control };

end TakeOff;

object ClimbOutAndClimb instance of MissionSegment is

components: ClimbOut and ClimbToAltitude;

control_action:

{ Ascend to cruise altitude< and speed.}

driver:

{ Time constraint, fuel consumption, ease pilot workload, ride quality };

control_system_requirement:

{ Thrust setting, manual trajectory control, auto trajectory control,

manual and auto trim envelope protection, auto control limiting, llft

config. };

end ClimbOutAndClimb;

object Cruise instance of MissionSegment is

components: ;

operations: ;

control_action:

{ Cruise. };

32

driver:

{ Ease pilot workload, fuel consumption, minimize drag, ride quality. };

controlsystem_requirement:

Speed control, manual trajectory control, auto trajectory control,

manual an auto trim, envelope protection, auto control limiting, lift

control. };

end Cruise;

object DescentAndApproach instance of MissionSegment is

components: Descent and Approach;

control action:

{ };
driver:

{ Ease pilot workload, ride quality, crosswind conditions, all weather

approaches, tight path following. };

control_system_requirement: _ };

{ Speed control, manual trajectory control, auto trajectory control,

manual and auto trim, envelope protection, auto control limiting, lift

control. };

end DescentAndApproach;

object Landing instance of MissionSegment is

components: Deceleration and Touchdown ;

control_action:

Flare, touchdown and decelerate to taxi speed. };

driver:

Runway length, crosswind conditions, rapid speed change, tight path

following all weather landings, ease pilot workload. };

control_system_requirement:

Speed control, manual trajectory control, auto trajectory control,

envelope protection, auto control limiting, lift control, stall angle of

atack warning. };

end Landing;

object MissedApproach instance of MissionSegment is

controlaction:

driver:

{ Rapid thrust change; quick, hard maneuvers. };

controlsystem_requirement:

Terrain and obstacle avoidance, wind shears, ride quality. };

description: ;

Thrust control, manual trajectory control, envelope protection, lift

control, engine out augmentation, stall angle of attack };

end Missed_Approach;

33

object class FlightPath is

components: Direction, Angle ;

operations: ;

description: ;

end FlightPath;

object ActualFlightPath instance of FlightPath is

components: {Inherited from FlightPath.}

description:

{ The sensed 4 dimensional flight path and attitudes of the aircraft as

well as any other sensed values necessary to satisfy the control

requirements. (See page 13.) }

end ActualFlightPath ;

object TargetFlightPath instance of FlightPath is

components:

description:

{ The desired 4 dimensional flight path and attitudes generated by some

navigation function. (See page 13.) }

end TargetFlightPath ;

object AircraftAttitudes is

components: Pitch, Roll, Heading;

description:

{ Aircraft pitch, roll and heading attitudes.

end AircraftAttitudes;

(See page 13.) }

object TargetFlightPath is { from pg 13 }

components:

operations:

description:

{ The desired 4 dimensional flight path and attitudes generated by some

navigation function. (See page 13.) }

end TargetFlightPath;

{** External forces object. Referenced in ASCT, but not thoroughly defined.

See translation notes for further discussion. **}

object class ExternalForcesOnActuator is

components: ;

operations: ;

description: ;

{ All forces (in particular environmental forces) other than the

actuation forces acting on the aerodynamic braking and roll actuation

system.};

34

end ExternalForcesOnActuator;

let t: Time;

m: Mission;

a: Aircraft

fl: FailureLevel

axiom

if (exists t,m,a : m. Time= t and a. State. HandlingQuality = Degraded)

then m. State= IsDegraded(m)

endif;

axiom

if (forall fl,a : if Probability(fl) < 1.0"I0"*-9

and a. State.Mode = CoreControl)

then MinimumAugmentation(a)

endif;

{ An "external forces" axiom that states that external forces exist that

cause anomalous conditions to arise, e.g., degraded handling quality. }

let ef: ExternalForce

axiom

exists (ef : (exists t : if m. Time= t then a. State. HandlingQuality = Degrad{

aux operation MinimumAugmentation is

inputs: A: Aircraft;

outputs: ;

body:

description: ;

end MinimumAugmentation;

C.M.F.2

operation EvaluateHandlingQualities is

components: ;

inputs: a: Aircraft, m: Mission;

outputs: PilotRating;

agent: Pilot

precond: m. State. FlightEnvelope = Normal

postcond:

description: ;

end EvaluateHandlingQualities;

end FlyMission;

35

* Module Crew contains material gleaned from throughout the ASCT

* specification. Pp. 196-196 contain very brief object descriptions of the

* Crew, but no details.

module Crew

object class CrewMember is

components: Name, SkillLevel, StrengthLevel;

description:

Class of crew members };

end CrewMember;

object Pilot instance of CrewMember is

components: PilotClassification;

description:

The pilot of the mission };

end Pilot;

object CoPilot instance of CrewMember is

components: PilotClassification;

description:

The copilot of the mission };

end Pilot;

object SkillLevel is number;

object StrengthLevel is number;

object MissionControlSystem is

components: ... ;

description:

The onboard computer support system. Used as agent of operation where

appropriate (i.e., in operations that are performed automatically versus

manually). };

end MissionControlSystem;

operation PerformPilotFunctions is

components:

inputs: PFPCFF: PilotFlightPathCommandFeelForce;

outputs: PLTF: PilotLongitudinalTrimForce,

PFPCF: PilotFlightPathCommandForce;

description:

{ The functions performed by the pilot. };

end operation AEPilot;

36

operation PerformCopilotFunctions is

components:

inputs: CopilotFlightPathCommandFeelForce ;

outputs: CopilotLongitudinalTrimForce, CopilotFlightPathCommandForce ;

{ The functions performed by the copilot. };

end operation AECopilot;

end Crew;

37

* Module Aircraft contains material gleaned from throughout the ASCT

* specification. Pp. 194-197 contain brief object descriptions of the

* Aircraft, but few details.

module Aircraft

object Aircraft is

components: State, Structure, MajorSystems, Attitudes, { ... };

operations: ;

description: ;

end Aircraft;

object Aircraft.State

components:

MCM: ManualControlMode, { The two modes of aircraft control, q.v. }

HQ: HandlingQuality,

NWP: NoseWheelPosition

}
operations: { Many. }

description:

The top-level repository for all aircraft state information. Note that

any explicit definition of this object is conspicuously missing from

ASCT. }

end Aircraft.State;

object AircraftState = Aircraft. State;

object NosewheelPosition is

components: ;

operations: ;

description:

Angular position of the nosewheel used for on ground low speed heading

control. };

end NosewheelPosition;

object Aircraft. Structure is

components: Engine*, EngineSupport*, PropellerShaft*, HighLiftDevices ;

description:

The structural components of the aircraft. Note that only those

components that appear in the requirements are listed here. A full

structural decomposition of the aircraft should be done in a complete

structures module, and would of course be very detailed. };

end Aircraft.Structure;

38

object class StructuralElement is

components: HowMounted, WhereMounted;

operations: ;

description: ;

end StructuralElement;

object Engine instance of StructuralElement is

components: Thrust... ;

description:

{ The aircraft engine };

end Engine;

object Engine.Thrust is

components: ;

operations: ;

description:

Thrust measurement;

end Engine. Thrust;

4** See ASCT pg. 88. **}

obj EngineThrust = Engine. Thrust; _ Simple naming macro for ASCT consistency. }

object HighLiftDevices is

components: LeadingEdgeFlap*, TrailingEdgeFlap*;

description: ;

end HighLiftDevices;

object HowMounted is

components: Location, ...;

operations: ;

description: ;

end HowMounted;

object HowMounted. Location is

components: External or Internal;

end HowMounted. Location;

object External = ''External";

object Internal = ''Internal";

Major Aircraft Systems (ASCT pg. 196 and elsewhere). In a full spec,

each component here should undoubtedly be represented in a separate module.}

object MajorSystems is

39

components: SensorSystem, PilotControlSystem, PropulsionSystem,

AirframeSystem, AutoFlightSystem;

operations: ;

description: ;

end MajorSystems

{Note that this should certainly be integrated with as a MajorSystems

component, but it appears as an isolated object in ASCT.}

object Autopilot is

components: ;

description:

{ The autopilot control unit. }

end Autopilot;

Flight Modes and Commands }

object class Mode is

components: ;

operations: ;

description:

{ A generic flight mode; specializations follow. };

end Mode

object class Command is

components: ;

operations: ;

description:

A generic flight command. Note that the component structure of a

command is is not precisely clear from the various appearances of the

term ''command" throughout ASCT. This should be corrected. }

end Command

Mode Specializations }

object ManualFlightMode instance of Mode is

components: Angle;

operations: ;

description:

Appears on ASCT pg. 129; no textual description given. }

end ManualFlightMode;

object AutoFlightMode is

components: ;

operations: ;

description: ;

40

{ Appears on ASCT pg. 129; no textual description given. }

end AutoFlightMode

{ Command Specializations }

object ManualFlightPathCommand instance of Command is

components: Angle;

operations: ;

description:

Flight path angle command generated manually (i.e., by the crew) };

end ManualFlightPathCommand

object AutolFlightPathCommand instance of Command is

components: Angle;

operations: ;

description:

Flight path command generated in an automated fashion (i.e., by a

computer system) };

end AutoFlightPathCommand

end Aircraft;

41

* Module Navigate is largely a place holder for information that is outside of

* the specific focus of this document, but which should be represented

* formally in some form in a complete document. Pages 12 and 13 are the only

* explicit mention of a Navigate function in ASCT.

module Navigate

{ Evidently outside of the scope of this spec }

operation Navigate is

components: ;

inputs: Mission;

outputs: TargetFlightPath;

description:

Generates the target flight path based on the particular mission

requirements and anticipated and sensed environmental conditions. };

end Navigate;

end Navigate;

42

* Module ControlMissionFlight is the contains the top-level functional

* components of the system, defined on pp. 17-89 of ASCT.

module ControlMissionFlight

operation field CMF;

from FlyMission import ActualFlightPath, "TargetFlightPath;

from Mission import State;

from Aircraft import State;

operation ControlMissionFlight is { pp. 13, 87 }

components: ControlThrust, ControlPitch, ControlRoll, ControlYaw,

ControlHeadingOnGround, ControlAerodynamicBraking, ControlBrakingOnGround,

ControlLiftConfig, UpdateAircraftState;

inputs: TargetFlightPath, ExternalForcesOnActuator,

ExternalForcesOnYawActuator, EnginesThrust;

outputs: DisplayedLongitudinalTrimPosition, StallAngleOfAttackWarning,

DisplayedRollTrimPosition, DisplayedDirectionalTrimPos,

AircraftAttitudes, ActualFlightPath, DisplayedInflightBrakePos,

DisplayedConfigAndFailureStatus;

description:

{ Receives a target flight path (generated by navigation) and generates

control signals for the actuation systems which generate the forces and

moments to control the aircraft attitudes to generate a flight path which

matches the target flight path. }

[** Requirement attributes: **}

CMF: 1 General Control Requirements

CMF: 2 Handling Qualities

CMF: 3 Operational Flight Envelope

CMF: 4 Manual and Automatic Trim Functions

CMF: 5 Envelope protection

CMF: 6 Autopilot Limiting and Actuation

CMF: 7 Maneuver Control Lags

CMF: 8 Requirements in Icing Conditions

CMF: 9 Control System Stability Requirement

CMF: I0 Residual Oscillations

CMF: ii Longitudinal Control Power Requirements

CMF: 12 Longitudinal Trim Authority

CMF: 13 Enhanced Longitudinal Control Maneuver Response

CMF: 14 Roll Mode Time Constant

CMF: 15 Pilot-Induced Oscillations

43

CMF: 16 Stall Characteristics

CMF: 17 Lateral Control Power Requirements

CMF: 18 Roll Response Linearity

CMF: 19 Roll Control Cross Coupling

CMF: 20 Lateral Trim Authority

CMF: 21 Enhanced Roll Maneuver Control

CMF: 22 Dynamic Stability

CMF: 23 Turn Coordination

CMF: 24 Directional Control Power Requirements

CMF: 25 Directional Trim Authority

CMF: 26 Flutter Prevention Requirements

end ControlMissionFlight;

DSBP: la

Means shall be provided to indicate to the flight crew the position of the

speed brake system.

DSBP: ib

Annunciation of failures or system operation which could result in an

unsafe condition if the crew were not aware of the condition shall be

provided (FAR 25..672a)

DSBP: Ic

Annunciation to the crew (in the form of an aural warning) shall be

provided for speedbrake deployment or the following condition: take-off

power and airplane on ground. (FAR 25.703a)

end;

[** The following are atomic component operations of ControlMissionFlight.

The remaining component operations are at the head of their respective

modules. **}

operation ControlThrust is

inputs: { Note that there should probably be inputs here. };

outputs: ThrustVectorActuatorConfiguration;

description:

No description in ASCT };

end ControlThrust;

operation ControlHeadingOnGround is

components: ;

inputs: { Ibid. };

44

outputs: NosewheelPosition;

description:

No description in ASCT.

end ControlHeadingOnGround;

Note also that lack of inputs is suspicious };

operation ControlBrakingOnGround is

components: ;

inputs: { Ibid.};

outputs: WhellBrakingPosition;

description:

No description in ASCT. Note also that lack of inputs is suspicious };

end ControlBrakingOnGround;

4** Organizationally, this operation would probably better be included in the

Aircraft module. It is here to maintain some lexical correspondence with

ASCT. **}

operation UpdateAircraftState is

components: ;

inputs: ThrustVectorActuatorConfiguration, PitchActuatorPosition,

RollActuatorPosition, YawActuatorPosition, NosewheelPosition,

DragActuatorPosition, WheelBrakePosition, LiftConfig, Aircraft. State

outputs: AircraftAttitudes, ActualFlightPath, Aircraft. State;

description: ;

Includes the airframe and the flight environment and outputs the

aircraft flight state as a result of the flight state and the

configuration of the flight control system. Note: this appears to be a

rather imprecise description; furthermore, inputs and outputs are not

clearly specified. See translation notes for further discussion. };

end UpdateAircraftState;

{** The following are atomic operations of Control Mission Flight, from pp.

87-88 of ASCT. Global non-atomic operations, such as Aircraft.State,

ActualFlightPath, and TargetFlightPath are defined in appropriate major

object modules. Local objects that belong to functions defined in other

modules, such as PitchActuatorPosition, are defined in the appropriate

operation modules. Use the browser to find their definitions. **}

object ThrustVectorActuatorConfiguration is

components: ;

operations: ;

description:

{ Configuration of the system which controls the magnitude and direction

of the thrust vector.};

end ThrustVectorActuatorConfiguration;

45

{** General Control Requirements (C.M.F.I), Pg. 18: Two modes of manual

control shall be provided: core control and enhanced control. **}

object ManualControlMode is

components: CoreControl or EnhancedControl

description:

{The core control mode provides the minimum level of augmentation (e.g.,

yaw damper, Mach trim, etc.) required by FAA certification at all failure

levels not extremely improbable (probability < 1.0E-9).

end;

axiom

{*** Pg. 18: Transfer between core and

operation TransferControlMode

inputs: AS: Aircraft. State

outputs: AS': Aircraft.State

postcond: if AS.ManualControlMode = CoreControl

then AS'.ManualControlMode = EnhancedControl

agent: Crew or AutoControlUnit

object CoreControl is "CoreControl";

object EnhancedControl is "EnhancedControl";

object HandlingQuality is

components: Normal or Degraded;

end HandlingQuality;

object Normal is "Normal";

object Degraded is "Degraded";

end ControlMissionFlight;

46

* Module ControlAerodynamicBraking from pp. 90-107

module ControlAerodynamicBraking

operation field CAB;

operation ControlAerodynamicBraking is {** pg. 88, 105-107 **}

components:

GenerateManualBrakeCommand, GenerateAutoBrakeCommand,

DisplaySpeedBrakePos, MoveDragActuator, ProvideCrewBrakingInterface

GenerateDragActuatorCommand;

inputs: TargetFlightPath, ExternalForcessOnActuator, ActualFlightPath

outputs: DragActuatorPosition, DisplayedInflightBrakePos, DragActuatorDisplay

description:

Controls drag and lift dumping to provide and aerodynamic braking

capability. }

CAB: {pg. 90

Manual and automatic control of aerodynamic braking shall be available.

Manual control shall be able to override the automatic control function.

Aerodynamic speed brake control function shall be available

for on-ground and in-flight operation}

CAB: {i.0 Ground Speed Brake Control

Ground speedbrake control shall provide ground deceleration capability

consistent with operational field landing length requirements.}

CAB: { 1.2.0a Inflight Speed Brake Control

The inflight speed brake actuators shall be sized to give adequate

inflight deflection at Vmo/Mmo for emergency descent.}

CAB: { 1.2.0b Inflight Speed Brake Control

Normal descent speed brake requirements shall not cause objectionable

horizontal tail buffet of engine flow distortion (FAR 25.251b)}

CAB: {1.2.0c CAB 2.0c Inflight Speed Brake Control

Control forces to trim the pitching moment change shall be less

than or equal to those required by FAR 25.143(b)}

CAB: {2a Aerodynamic Braking Function Availability Requirements }

Each individual speed brake device shall provide fail-passive control for

failure modes more probable than 10-7/flt hour}

CAB: { 2b

47

Loss of all speedbrake control shall be less than 10-7/flt hour}

end ControlAerodynamicBraking;

operation GenerateManualBrakeCommand is

components: ;

inputs: TargetFlightPath, ActualFlightPath;

outputs: CrewBrakeForce;

agent: Crew;

description:

Generates the speedbrake command manually (i.e., by the crew).}

end GenerateManualBrakeCommand;

operation GenerateAutoBrakeCommand is

components: ;

inputs: TargetFlightPath, ActualFlightPath;

outputs: AutoBrakeCommand;

agent: FlightControlSystem;

description:

{Involves generation of the speedbrake command in an automated fashion};

end GenerateAutoBrakeCommand;

operation DisplaySpeedBrakePos is

components: ;

inputs: DragActuatorDisplay;

outputs: DisplayedInflightBrakePos;

description: ;

Indicates to the flight crew the position of the speedbrake system and

annunciates unsafe speedbrake positions and unsafe failures. }

end DisplaySpeedBrakePos;

operation MoveDragActuator is

components: ;

inputs: DesiredDragActuatorPosition, ExternalForcesOnActuator;

outputs: DragActuatorDisplay;

description:

{Moves the position of the system which provides the aerodynamic braking

and lift dumping capability (spoiler/speedbrakes)};

end MoveDragActuator;

operation ProvideCrewBrakingInterface is

components: ;

inputs: CrewBrakeForce;

outputs: ManualBrakeCommand;

description:

{Converts the force exerted by the crew into an aerodynamic braking

48

command};

end ProvideCrewBrakingInterface;

operation GenerateDragActuatorCommand is

components: ;

inputs: ManualBrakeCommand, AutoBrakeCommand;

outputs: DesiredDragActuatorPosition;

description:

Generates a drag actuator command based on the manual and auto braking

commands};

end GenerateDragActuatorCommand;

end ControlAerodynamicBraking;

49

* Module ControlLiftConfiguration from pp. 92-119

module ControlLiftConfiguration

operation field CLC "label comment"

operation ControlLiftConfig is

components:

inputs: TargetFlightPath, ActualFlightPath

outputs: DisplayedConfigAndFailureStatus, LiftConfig

description:

{ Configures the wing for different lift properties such that required

lift and control is achieved at low speed (takeoff and landing) and low

drag an be achieved at high speeds. }

CLC: { 1

The wing high lift design (both leading edge and trailing edge devices)

shall be adjustable to provide a variable lift capability to ensure the

achievement of low speeds performance requirements coupled with certifiable

handling characteristics. Manual and automatic system operation shall be

provided. High lift device position indication and failure status shall be

available.}

CLC: {2 p. 93. Lift configuration control function availability

requirements. The high lift system shall provide the following functional

availability (function, probability of loss of function

LE and TE Control, 10-7)

LE Control, 10-6)

TE Control, 10-6)

Autoslat, 10-5)

Flap load relief, 10-5)

LE and TE Failure annunciation, 10-5)

LE Control and LE Failure annunciation, 10-9)

TE Control and TE Failure annunciation, 10-9)}

end ControlLiftConfig;

operation GenerateMaualConfigCmd is

components: ;

inputs: TargetFlightPath, ActualFlightPath;

outputs: CrewHLConfigCmdForce;

agent: Crew;

description:

Involves the generation of the high lift configuration command in the

5O

manual fashion (i.e., by the crew). Note that name spelling (...Cmd) is

not consistent with spellings of comparable operations (i.e.,

...Command).}

end GenerateMaualConfigCmd;

operation GenerateAutoConfigCommand is

components: ;

inputs: TargetFlightPath, ActualFlightPath;

outputs: AutoConfigCommand;

agent: MissionFlightSystem;

description:

Generates the high lift configuration command in an automated fashion

(i.e., by the computer system). }

end GenerateAutoConfigCommand;

operation DisplayConfigAndFailStatus is

components: ;

inputs: HighLiftConfigAndFailureStatus;

outputs: DisplayedConfigAndFailureStatus;

description:

{ Displays to the crew the position of the high lift devices and

annunciates any height lift device failure conditions. };

end DisplayConfigAndFailStatus;

operation MoveLiftConfigActuator is

components: ;

inputs: HighLiftActuatorCommands;

outputs: HighLiftDevicePositions, HighLiftConfigAndFailureStatus, LiftConfig

description:

Involves the actuation of the high lift devices (i.e., the leading edge

and trailing edge flaps).

end MoveLiftConfigActuator;

operation ProvideCrewConfigInterface is

components: ;

inputs: CrewHLConfigCmdForce;

outputs: ManualConfigCmd;

description:

{ Provides the interface which allows the crew to input commands to the

high lift system. See notes in analysis section about ad hoc user

interface specification in the original ASCT.};

end ProvideCrewConfigInterface;

operation GenerateConfigActuatorCmd is

components: ;

51

inputs: AutoConfigCommand, HighLiftDevicePositions, ManualConfigCmd;

outputs: HighLiftActuatorCommands;

description:

{ Involves the actuation of the high lift devices (i.e., the leading edge

and trailing edge flaps). };

end GenerateConfigActuatorCmd;

end ControlLiftConfiguration;

52

* Module ControlPitch from pp. 120-144

module ControlPitch

from FlyMission import ExternalForcesOnActuator, TargetFlightPath;

operation field LAPC "label comment"

operation field PLEP "label comment"

operation field PSAW "label comment"

operation ControlPitch is {pp. 87, 120}

components: GenerateLongitudinalTrimCommand, DisplayLongitudinalTrimStatus,

GeneratePitchActuatorCommand, MovePitchActuators,

ProvideStallAngleOfAttackWarning, ProvideLongitudinalEnvelopeProtection,

GenerateFlightPathCor_nand, LimitAutoPitchCommand;

inputs: ActualFlightPath, ExternalForcesOnPitchActuator, TargetF!ightPath

outputs: StallAngleOfAttackWarning, DisplayedLongitudinalTrimPosition,

PitchActuatorPosition

description:

{ Performs all functions required to control the lateral axis by

controlling the pitch angle. }

LAPC: 1

PLEP: 1

PLEP: 2

PSAW: 1

end ControlPitch;

operation <NAME> is

operation GenerateLongitudinalTrimCommand is

components:

inputs: ;

outputs: AutoLongitudinalTrimCommand, ManualLongitudinalTrimCommand;

description:

Generates trim commands to offload steady state pitch commands from the

elevator to the stabilizer. }

end GenerateLongitudinalTrimCommand;

operation DisplayLongitudinalTrimStatus is

components:

inputs: LongitudinalTrimPosition

outputs: DisplayedLongitudinalTrimPosition

description:

Displays the longitudinal trim status to the crew. NOTE: inconsistency

_3

in this function name on pp. 120 and 121.) }

end DisplayLongitudinalTrimStatus;

operation GeneratePitchActuatorCommand is

components:

inputs: LimitedFlightPathCommand and ManualLongitudinalTrimCommand and

AutoLongitudinalTrimCommand and ActualFlightPath

outputs: DesiredPitchActuatorPosition and LongitudinalTrimPosition

description:

Generates the pitch actuator (elevator and stabilizer) position command

based on the flight path angle and longitudinal trim commands

end GeneratePitchActuatorCommand;

operation MovePitchActuators is

components:

inputs: DesiredPitchActuators, ExternalForcesOnActuator

outputs: PitchActuatorPosition

description:

Receives the desired pitch actuators positions and attempts to move the

actuators to thoses positions. }

end MovePitchActuators;

operation ProvideStallAngleOfAttackWarning is

components:

inputs: ActualFlightPath

outputs: StallAngleOfAttackWarning

description:

Monitors the aircraft flight path state vector and attitudes and

generates a warning for the crew when approaching the aircraft stall

angle of attack. NOTE naming inconsistency on pp. 120 and 121.}

end ProvideStallAngleOfAttackWarning;

operation ProvideLongitudinalEnvelopeProtection is

components:

inputs: ActualFlightPath, ManualFlightPathCon_nand, LimitedFlightPathCon_nand

outputs: LimitedFlightPathCommand

description:

{ Monitors the aircraft states and modifies the flight path angle command

as necessary to satisfy the longitudinal envelope protection

requirements. }

end ProvideLongitudinalEnvelopeProtection;

operation GenerateFlightPathCommand is

components:

GenerateFlightPathCommandManual, MakeManualVsAutoFlightModeDecision,

54

EngageManOrAutoOperation, GenerateFlightPathCommandAuto

inputs: TargetFlightPath, ActualFlightPath

outputs: ManualFlightPathCommand, AutoFlightPathCommand

description:

{ Compares the actual flight path angle to the desired flight path angle

and generates the necessary flight path angle command. }

end GenerateFlightPathCon_nand;

operation LimitAutoPitchCommand is

components:

inputs: AutoFlightPathCommand

outputs: LimitedFlightPathCommand

description:

{ Limits the autopilot control authority and protects against failures

(in particular hardover and oscillatory failures) in the autopilot. }

end LimitAutoPitchCommand;

object DisplayedLongitudinalTrimPosition is

components:

operations:

description:

The longitudinal trim position displayed to the crew }

end DisplayedLongitudinalTrimPosition;

object AutoLongitudinalTrimCommand is

components:

operations:

description:

{ The Longitudinal trim command generated automatically during enhanced

manual control and autoflight control }

end AutoLongitudinalTrimCommand;

object ManualLongitudinalTrimCommand is

components:

operations:

description:

{ The longitudinal trim command generated by the crew for use during

normal and backup control }

end ManualLongitudinalTrimCommand;

object AutoFlightPathCommand is

55

components:

operations:

description:

The flight path command generated automatically during enhanced manual

control and autoflight control }

end AutoFlightPathCommand;

object LongitudinalTrimPosition is

components:

operations:

description:

{ Position of the longitudinal trim actuator }

end LongitudinalTrimPosition;

object ActualFlightPath is

components:

operations:

description:

The sensed 4 dimensional flight path & attitudes of the aircraft as

well as other sensed values necessary to satisfy the control

requirements.}

end ActualFlightPath;

object ManualFlightPathCommand is

components:

operations:

description:

The Flight path angle command generated manually (i.e., by the crew)}

end ManualFlightPathCommand;

object LimitedFlightPathCommand is

components:

operations:

description:

The flight path command limited such that envelope protection is not

violated}

end LimitedFlightPathCommand;

object $tallAngleOfAttackWarning is

5O

components:

operations:

description:

{ The audible and visual indication to the crew that the aircraft is

approaching the stall angle of attack}

end StallAngleOfAttackWarning;

object PitchActuatorPosition is

components:

operations:

description:

The Position of the actuator(s) which provide(s) aircraft pitch

maneuver and trim control. }

end PitchActuatorPosition;

object TargetFlightPath = FlyMission. TargetFlightPath;

object DesiredPitchActuatorPosition is

components:

operations:

description:

The desired pitch actuator (elevator) position such that the limited

flight path angle command is achieved }

end DesiredPitchActuatorPosition;

object ExternalForcesOnActuator = FlyMission. ExternalForcesOnActuator;

{ Pp. 127 128 }

operation GenerateFlightPathCmdManual is

components: ;

inputs: ActualFlightPath, TargetFlightPath;

outputs: ManualFlightPathCommand;

description:

Involves the generation of a flight path con_mand manually _i.e., by the

crew) as a result of comparing the target and actual flight paths. } ;

end GenerateFlightPathCmdManual;

operation GenerateFlightPathCmdAuto is

components: ;

inputs: ;

outputs: ;

description:

{ Generates a flight path angle command automatically (i.e., by the a

computer) as a result of the difference between the actual and target

57

flight< paths. };

end GenerateFlightPathCmdAuto;

operation MakeManualVsAutoFlightModeDecision is

components: ;

inputs: ;

outputs: ManualFlightMode;

description: AutoFlightMode;

Decides whether to generate flight path commands manually or

automatically. };

end MakeManualVsAutoFlightModeDecision;

operation EngageManOrAutoOperation is

components: ;

inputs: ManualFlightMode;

outputs: AutoFlightMode;

description:

{ Activates one of the flight path command generation processes depending

on the mode engaged. };

end EngageManOrAutoOperation;

end ControlPitch;

58

* Module FlightControlSystemPitchFunctions from pp. 129-144

module FlightControlSystemPitchFunctions;

operation FlightControlSystemPitchContext is

components: PerformPilotFunctions, PerformCopilotFunctions,

FlightControlSystemPitchFunctions, PerformAutoFlightSystemFunctions;

inputs:

{ Unclear - see pg. 129. };

outputs: PitchActuatorPosition;

description: { Unclear - see pp. 129-130. };

end FlightControlSystemPitchContext;

operation FlightControlSystemPitchFunctions is

components: ProvidePilotPitchInterface, ProvideCopilotPitchInterface,

DisplayLongitudinalTrimStatus, ResolvePitchControlContention,

GeneratePitchActuatorCommand, MevePitchActuators,

ProvideStallAngleOfAttackWarning,

DisplayLongitudinalEnvelopeProtectStatus,

ProvideLongitudinalEnvelopeProtection, LimitAutoPitchCommands,

inputs: PilotLongitudinalTrimForce, PilotFlightPathCommandForce,

CopilotLongitudinalTrimForce, CopilotFlightPathCmdForce,

AutoLongitudinalTrimCommand, AutoFlightPathCommand

PLUS MAYBE THE FOLLOWING DUE TO AMBIGUITY ON PP. 129 VS 133: }

, ActualFlightPath, ExternalForcesOnActuator;

outputs: PilotFlightPathCmdFeelForce, CopilotFlightPathCmdFeelForce,

PitchActuatorPosition

description:

Note that the following description is taken from ASCT page 130, but

it is not a fully accurate description of this operation as it is defined

in WSRSL. See the remarks on page ??? of the report.

Contains all the flight control functions assigned to the FCS. As a

result of this assignment several new processes are created, some of

these are interface functions and others are as a result of how functions

were allocated to the AEs. (I.e., Envelope Protection was assigned to the

FCS with a probability of failure < 10E-6. However this function

requires <IOE-9. Therefore the pilot and copilot must perform envelope

protection when not being performed by the FCS. Thus a pilot indication

function of the status of envelope protection is generated.) Pilot and

copilot can command roll reate, thus there is a function requirement to

resolve control contention.}

end FlightControlSystemPitchFunctions;

.59

object CopilotFlightPathCommandFeelForce is

components:

description:

{ A resistance force exerted by the controller which is a feedback to the

copilot indicative of the flight path angle. }

end CopilotFlightPathCommandFeelForce;

object CopilotFlightPathCommandForce is

components:

description:

{ The physical force generated by the copilot to control the aircraft

flight path angle. It is in the form of a force exerted by the pilot's

hand.}

end CopilotFlightPathCommandForce;

object CopilotLongitudinalTrimForce is

components:

description:

{ The physical force exerted by the copilot's hand to generate the

desired longitudinal trim command. };

end CopilotLongitudinalTrimForce;

object PilotFlightPathCommandForce is

components:

description:

{ The physical signal created by the pilot to control the aircraft flight

path. It is in the form exerted by the pilot.}

end PilotFlightPathCommandForce;

object PilotFlightPathFeelForce is

components:

description:

{ A resistance force exerted by the controller which is a feedback to the

pilot indicative of the flight path command.}

end PilotFlightPathFeelForce ;

object PilotLongitudinalTrimForce is

components:

description:

{This flow is the physical force exerted by the pilot's hand to generate

the desired longitudinal trim command.}

end PilotLongitudinalTrimForce;

object PitchActuatorPosition is

components:

6O

description:

Position of the actuator(s) which provide aircraft pitch maneuver and

trim control.}

end PitchActuatorPosition;

133 - 13s}
operation ProvidePilotPitchInterface is

components: ;

inputs: PilotLongitudinalTrimForce, PilotFlightPathCmdForce;

outputs: PilotFlightPathCmdFeelForce, PilotLongitudinalTrimCommand,

PilotFlightPathCommand;

description:

{ Converts the signal received from the pilot in the form of a force

exerted by the pilot into a flight path angle command signal to be used

by the FCS. It also provides the pilot with a feedback feel force

indicative of the command. };

end ProvidePilotPitchInterface

operation ProvideCopilotPitchInterface is

components: ConvertForceToDisplacement, GenerateLongitudinalFeelForce,

TranslateFlightPathDisplacementToCommand,

TranslateTrimForceToTrimCommand;

inputs: CopilotFlightPathCmdForce, CopilotLongitudinalTrimForce;

outputs: CopilotFlightPathCmdFeelForce, CopilotFlightPathCommand,

CopilotLong<itudinalTrimCommand ;

description:

Provides the same capability for the copilot as the

ProvidePilotPitchInterface does for the pilot. };

end ProvideCopilotPitchInterface

operation DisplayLongitudinalTrimStatus is

components: ;

inputs: ;

outputs: LongitudinalTrimPosition;

description:

{ Displays the longitudinal trim status to the crew. };

end DisplayLongitudinalTrimStatus

operation ResolvePitchControlContention is

components: ;

inputs: CopilotFlightPathCommand, CopilotLongitudinalTrimCommand,

PilotFlightPathCommand, PilotLongitudinalTrimCommand;

outputs: ManualFlightPathCommand;

description:

Generated by the assignment of the GenerateFlightPathCommandManual to

61

both the pilot and copilot. NOTE: this description is unclear. };

end ResolvePitchControlContention

operation GeneratePitchActuatorCommand is

components: ;

inputs: ManualFlightPathCommand, ActualFlightPath,

AutoLongitudinalTrimCommand;

outputs: LongitudinalTrimPosition, DesiredPitchActuatorPosition;

description:

{ Generates the pitch actuator (elevator and stabilizer) position

commands based on the flight path angle and longitudinal trim commands.

};
end GeneratePitchActuatorCommand

operation MovePitchActuators is

components: ;

inputs: DesiredPitchActuatorPosition, ExternalForcesOnActuator;

outputs: PitchActuatorPosition;

description:

{ Receives the desired pitch actuators positions and attempts to move the

actuators to those positions. };

end MovePitchActuators

operation ProvideStallAngleOfAttackWarning is

components: ;

inputs: ActualFlightPath;

outputs: StallAngleOfAttackWarning;

description:

{ Monitors the aircraft flight path state vector and attitudes and

generates a warning for the crew when approaching the aircraft stall

angle of atack. };

end ProvideStallAngleOfAttackWarning

{NOTE: Inconsistent Names Pp. 133, 134}

operation DisplayLongitudinalEnvelopeProtectStatus is

components: ;

inputs: LongitudinalEnvelopeProtectStatus;

outputs: DisplayedLongitudinalEnvelopeProtectStatus;

description:

{ Results from the allocation of ProvideLongitudinalEnvelopeProtection to

the FCS with a probability of loss of function of <IOE-6. Pitch envelope

protection has a req for probability of loss of function <IOE-9, and

thus the crew has responsibility for pitch envelope protection when not

performed by the FCS. Thus the crew must be aware of envelope protect

status, hence the functional requirement to

62

DisplayLongitudinalEnvelopeProtectStatus };

end DisplayLongitudinalEnvelopeProtectStatus

operation ProvideLongitudinalEnvelopeProtection is

components: ;

inputs: ActualFlightPath, LimitedFlightPathCommand,

ManualFlightPathCommand;

outputs: LimitedFlightPathCommand, LongitudinalEnvelopeProtectStatus;

description:

Monitors the aircraft states and modifies the flight path angle command

as necessary to satisfy the longitudinal envelope protection requirements.

};
end ProvideLongitudinalEnvelopeProtection

operation LimitAutoPitchCommands is

components: ;

inputs: AutoFlightPathCommand;

outputs: LimitedFlightPathCommand;

description:

{ Limits the autopilot control authority and protects against failures

(in particular hardover and oscillatory failures in the autopilot. };

end LimitAutoPitchCommands

{*** Pilot Pitch Interface, pp. 137-138 ***}

operation ConvertForcesToDisplacement is

components: ;

inputs: FlightPathCommandForce, FlightPathCommandFeelForce;

outputs: FlightPathCommandDisplacement;

description:

Receives the pilot force and feedback feel force and generates a

displacement. Note name inconsistency on pp. 137, 138. }

end ConvertForcesToDisplacement;

operation GenerateLongitudinalFeelForce is

components: ;

inputs: FlightPathAngleCommand;

outputs: FlightPathCommandFeelForce;

description:

{ Generates a force to feedback to the pilot which is indicative of the

pitch maneuver and trim commands. Note name inconsistency pp. 137,138. }

end GenerateLongitudinalFeelForce;

operation TranslateFlightPathDisplacementToCommand is

components: ;

inputs: FlightPathCommandDisplacement;

63

outputs: FlightPathAngleCommand;

description:

Translates the physical displacement of the pitch controller into a

flight path command. Note name inconsistency pp. 137,138. }

end TranslateFlightPathDisplacementToCommand;

operation TranslateTrimForceToTrimCommand is

components: ;

inputs: LongitudinalTrimForce;

outputs: LongitudinalTrimCommand;

description:

Converts the physical displacement generated by the physical force

exerted by the pilot into a trim command for use by the FCS. Note name

inconsistency pp. 137,138. }

end TranslateTrimForceToTrimCommand;

end FlightControlSystemPitchFunctions;

64

* Module ControlRoll from pp. 145-168

module ControlRoll

operation ControlRoll is {pp. 87, 145}

components: GenerateRollTrimCommand, DisplayRollTrimPosition,

GenerateRollActuatorCommand, MoveRollActuator,

ProvideRollEnvelopeProtection, GenerateRollRateCommand,

LimitAutoRollCommands;

inputs: TargetFlightPath, ActualFlightPath, ExternalForcesOnActuator;

outputs: DisplayedLongitudinalTrimPosition, TargetFlightPath,

RollActuatorPosition, ExternalForcesOnYawActuator;

description:

{ Performs all functions required to control the lateral axis by

controlling the roll angle. };

end ControlRoll;

operation GenerateRollTrimCommand is

components: ;

inputs: {Note that no inputs is suspicious here};

outputs: AutoRollTrimCommand, ManualRollTrimCommand;

description:

{ Generates roll trim commands to offset asymmetries such as engine

out, engine loss and lateral winds. }

end GenerateRollTrimCommand;

operation DisplayRollTrimPosition is

components: ;

inputs: RollTrimPosition;

outputs: DisplayedRollTrimPosition;

description:

{ Displays roll trim position to the crew. };

end DisplayRollTrimPosition;

operation GenerateRollActuatorCommand is

components: ;

inputs: ManualRollTrimCommand, AutoRollTrimCommand, ActualFlightPath,

LimitedRollRateCommand;

outputs: RollTrimPosition, DesiredRollActuatorPosition;

description:

{ Generates the roll actuator (aileron / spoiler) position commands based

on roll rate and trim commands. };

end GenerateRollActuatorCommand;

65

operation MoveRollActuator is

components: ;

inputs: ;DesiredRollActuatorPosition, ExternalForcesOnActuator;

outputs: RollActuatorPosition;

description:

Receives the desired roll actuator position and attempts to move the

roll actuator to that position. };

end MoveRollActuator;

operation ProvideRollEnvelopeProtection is

components: ;

inputs: ManualRollRateCommand, LimitedAutoRollCommand, RollAngle;

outputs: LimitedRollRateCommand;

description:

{ Monitors actual roll angle and commanded roll rate and modifies the

roll rate command as necessary to prevent the roll angle from exceeding

certain limits. };

end ProvideRollEnvelopeProtection;

operation GenerateRollRateCommand is

components: GenerateRollRateCommandManual, EngageManOrAutoOperation,

GenerateRollRateCommandAuto, MakeManualVsAutoFlightModeDecision;

inputs: TargetFlightPath, ActualFlightPath;

outputs: AutoRollRateCommand, ManualRollRateCommand;

description:

Compares the target flight path and actual flight path and generates

necessary roll rate command to drive the actual to the target. };

end GenerateRollRateCommand;

operation LimitAutoRollCommands is

components: ;

inputs: AutoRollRateCommand;

outputs: LimitedAutoRollCommand;

description:

Limits the autopilot control authority and protects against failures

(in particular hardover or oscillatory failures) in the autopilot. };

end LimitAutoRollCommands;

Pp. 151-152 }

operation GenerateRollRateCommandManual is

components: ;

inputs: ActualFlightPath, TargetFlightPath, ManualModeEngaged;

outputs: ManualRollRateCommand;

description:

Involves the generation of ta roll rate command manually (i.e., by the

66

crew) as a result of comparing the target and actual flight paths. };

end GenerateRollRateCommandManual;

operation EngageManOrAutoOperation is

components: ;

inputs: ManualFlightMode, AutoFlightMode;

outputs: ManualModeEngaged, AutoModeEngaged;

description:

Activates one of the roll rate generation processes depending on the

mode engaged. }

end EngageManOrAutoOperation;

operation GenerateRollRateCommandAuto is

components: ;

inputs: AutoModeEngaged, TargetFlightPath, ActualFlightPath;

outputs: AutoRollRateCommand;

description:

Involves the generation of a roll rate command automatically (i.e., by

the computer) as a result of the difference between the actual and target

flight path. };

end GenerateRollRateCommandAuto;

operation MakeManualVsAutoFlightModeDecision is

components: ;

inputs: { Note no inputs - seem reasonable here. };

outputs: ManualFlightMode, AutoFlightMode;

description:

Decides whether to generate flight path commands manually or

automatically. Note - not clear if this should be the same as operation

of the same in ControlPitch module. };

end MakeManualVsAutoFlightModeDecision;

end ControlRoll;

67

* Module FlightControlSystemRollFunctions from pp. 153-168

module FlightControlSystemRollFunctions

operation FlightControlSystemRollContext is

components: PerformPilotFunctions, PerformCopilotFunctions,

FlightControlSystemRollFunctions, PerformAutoFlightSystemFunctions;

inputs: { Unclear - see pg. 153. };

outputs: RollActuatorPosition;

description: { Unclear - see pp. 153-154. Also cf.

FlightControlSystemPitchContext in module

FlightControlSystemRollFunctions above. };

end FlightControlSystemRollContext;

operation FlightControlSystemRollFunctions is

components: ProvidePilotRollInterface, ProvideCopilotRollInterface,

DisplayRollTrimStatus, ResolveRollControlContention,

GenerateRollActuatorcommand, MoveRollActuator,

DisplayRollEnvelopeProtectStatus, ProvideRollEnvelopeProtection,

LimitAutoRollCommands;

inputs: PilotRollTrimForce, PilotRollRateForce, CopilotRollRateForce,

CopilotRollTrimForce, AutoRollTrimCmd, AutoRollRateCmd;

{ plus maybe the following due to ambiguity on pp. 153 versus 157: }

, ActualFlightPath, ExternalForcesOnActuator, RollAngle {Note that the

RollAngle input here is seemingly inconsistent with the ActualFlightPath

input in the comparable position in the FlightContorlSystemPitchFunctions

on pg. 133.};

outputs: PilotRRCmdFeelForce, CopilotRRCmdFeelForce,

DisplayedRollTrimPosition, RollActuatorPosition,

DisplayedRollEnvelopeProtectStatus {Note that as with inputs, these are

inconsistent on pp. 153 versus 157.};

description:

{ Note that the following description is taken from ASCT page 154, but

it is not a fully accurate description of this operation as it is defined

in WSRSL. See the remarks on page ??? of the report. Cf. also

description of operation FlightControlSystemPitchFunctions above.

Contains all the flight control functions assigned to the FCS. As a

result of this assignment several new processes are created. Some of

these are interface functions and others are as a result of how

functions were allocated to the AEs. (I.e., Envelope protection was

assigned to the FCS with a probability of failure <IOE-6. However this

function requires <IOE-09. Therefore the pilot and copilot must perform

envelope protection when not being performed by the FCS. Thus a pilot

0S

indication function of the status of envelope protection is generated.)

Pilot and copilot can command roll rate, thus there is a functional

requirement to resolve control contention. };

end FlightControlSystemRollFunctions;

operation ProvidePilotRollInterface is

components: ConvertForcesToDisplacement, GenerateRollFeelForce,

TranslateRRDisplToRRCommand, TranslateTrimForceToTrimCommand;

inputs: PilotRollTrimForce, PilotRollRateForce;

outputs: PilotRRCmdFeelForce, PilotRollTrimCommand, PilotRollRateCommand;

description:

{ Converts the signal received from the pilot in the form of a force

exerted by the pilots hand into a roll rate signal to be used by the

FCS. It also provides the pilot with a feedback feel force proportional

to the commanded roll rate. };

end ProvidePilotRollInterface;

operation ProvideCopilotRollInterface is

components: ;

inputs: CopilotRollRateForce, CopilotRollTrimForce;

outputs: CopilotRRCmdFeelForce, CopilotRollRateCommand,

CopilotRollTrimCommand;

description:

{ Provides the same function for the copilot as the

ProvidePilotRollInterface does for the pilot. };

end ProvideCopilotRollInterface;

operation DisplayRollTrimStatus is

components: ;

inputs: RollTrimPosition;

outputs: DisplayedRollTrimPosition;

description:

{ Displays roll trim position to the crew.

pp. 157 vs. 158. };

end DisplayRollTrimStatus;

Note naming inconsistency on

operation ResolveRollControlContention is

components: ;

inputs: PilotRollRateCommand, PilotRollTrimCommand, CopilotRollRateCommand,

CopilotRollTrimCommand;

outputs: ManualRollRateCommand, ManualRollTrimCmd;

description:

Generated by the assignment of the Generate Roll Rate Cmd Manual to

both the pilot and copilot. }

end ResolveRollControlContention;

69

operation GenerateRollActuatorCommand is

components: ;

inputs: LimitedRollRateCommand, ManualRollTrimCmd, ActualFlightPath,

AutoRollTrimCmd;

outputs: RollTrimPosition, DesiredRollActuatorPos;

description:

Generates the roll actuator (aileron / spoiler) position cormmands based

on roll rate and trim commands. };

end GenerateRollActuatorcommand;

operation MoveRollActuator is

components: ;

inputs: DesiredRollActuatorPos, ExternalForcesOnActuator;

outputs: RollActuatorPosition;

description:

{ Receives the desired roll actuator position and attempts to move the

roll actuator to that position. };

end MoveRollActuator;

operation DisplayRollEnvelopeProtectStatus is

components: ;

inputs: RollEnvelopeProtectStatus;

outputs: DisplayedRollEnvelopeProtectStatus;

description:

Results from the allocation of Provide Roll Envelope Protection to the

FCS with a probability of loss of function of <IOE-6. Provide

RollEnvelopeProtection has a probability of loss of function of < 10E-

and thus the crew has responsibility for roll envelope protection when

not performed by the FCS. Thus the crew must be aware of envelope

protect status, hence the function requirement to Display Roll Envelope

Protect Status. };

end DisplayRollEnvelopeProtectStatus;

operation ProvideRollEnvelopeProtection is

components: ;

inputs: RollAngle {Note:Why not ActualFlightPath as in

operation ProvideLongitudinalEnvelopeProtection on pg. 133},

LimitedAutoRollcommand, ManualRollRateCommand;

outputs: LimitedRollRateCommand, RollEnvelopeProtectStatus;

description:

Monitors actual roll angle and commanded roll rate and modifies the

roll rate command as necessary to prevent the roll angle from exceeding

certain limits. }

7O

end ProvideRollEnvelopeProtection;

operation LimitAutoRollCommands is

components: ;

inputs: AutoRollRateCommand;

outputs: LimitedAutoRollCommand;

description:

Limits the autopilot control authority and protects against failures

(in particular hardover or oscillatory failures) in the autopilot. };

end LimitAutoRollCommands;

{*** Pilot Roll Interface, pp. 161-162 ***}

operation ConvertForcesToDisplacement is

components: ;

inputs: RollRateForce, RRCmdFeelForce;

outputs: RollRateCmdDispl;

description:

Receives the pilot force and feedback feel force and generates a

displacement.};

end ConvertForcesToDisplacement;

operation GenerateRollFeelForce is

components: ;

inputs: RollRateCommand;

outputs: RRCmdFeelForce, RRCmdFeelForce;

description:

Generates a force to feedback to the pilot which is an indication of

the commanded roll rate. };

end GenerateRollFeelForce;

operation TranslateRRDisplToRRCommand is

components: ;

inputs: RollRateCmdDispl;

outputs: RollRateCommand, RollRateCommand;

description:

Translates the sidestick controller displacement to a roll rate command.

};
end TranslateRRDisplToRRCommand;

operation TranslateTrimForceToTrimCommand is

components: ;

inputs: RollTrimForce;

outputs: RollTrimCommand;

description:

Converts the physical displacement generated by the physical force

71

exerted by the pilot into a trim command for use by the FCS.);

end TranslateTrimForceToTrimCommand;

end FlightControlSystemRollFunctions;

72

* Module ControlYaw from pp. 169 - 193

module ControlYaw

operation ControlYaw is

components: GenerateDirectionalTrimCommand, DisplayDirectionalTrimPosition,

GenerateYawActuatorCommand, EngineOutControlAugmentation,

MoveYawActuator, ProvideYawEnvelopeP[otection, GeneateSideslipCommand,

LimitAutoSideslipCommands;

inputs: TargetFlightPath, ActualFlightPath, EngineThrust,

ExternalForcesOnYawActuator, SideslipAngle { Inconsistent pp. 87 versus

169 };

outputs: DisplayedDirectionalTrimPos, YawActuatorPosition;

description:

Controls the aircraft directional axis. };

end ControlYaw;

operation GenerateDirectionalTrimCommand is

components: ;

inputs: { None - suspicious. };

outputs: ManualDirectionalTrimCmd, AutoDirectionalTrimCmd;

description:

Generates directional trim commands to offset asymmetries such as

engine out and lateral winds. Note: inconsistent names pp. i.};

end GenerateDirectionalTrimCommand;

operation DisplayDirectionalTrimPosition is

components: ;

inputs: DirectionalTrimPosition;

outputs: DisplayedDirectionalTrimPos;

description:

Displays the position for the directional trim actuator to the crew. };

end DisplayDirectionalTrimPosition;

operation GenerateYawActuatorCommand is

components: ;

inputs: LimitedSideslipCommand, ManualDirectionalTrimCmd,

AutoDirectionalTrimCmd, ActualFlightPath, ECAYawCommand;

outputs: DirectionalTrimPosition, DesiredYawActuatorPosition;

description:

Generates the sideslip actuator (rudder) position command based on the

limited sideslip command, directional trim command and the engine out

control augmentation command. };

end GenerateYawActuatorCommand;

73

operation EngineOutControlAugmentation is

components: ;

inputs: EnginesThrust;

outputs: ECAYawCommand;

description:

Monitors the engine thrust and generates a yaw command to assist the

pilot in compensation for an engine out situation. In particular it

helps relieve pilot workload in takeoff and go around which are high

pilot workload situations. };

end EngineOutControlAugmentation;

operation MoveYawActuator is

components: ;

inputs: DesiredYawActuatorPosition, ExternalForcesOnYawActuator;

outputs: YawActuatorPosition;

description:

Receives the desired yaw actuator position and attempts to move the

yaw actuator to that position. };

end MoveYawActuator;

operation ProvideYawEnvelopeProtection is

components: ;

inputs: SideslipAngle, ManualSideslipComand, LimitedAutoSideslipCommand;

outputs: LimitedSideslipCommand;

description:

Monitors the commanded sideslip and the actual sideslip and modifies

the sideslip command to prevent the sideslip angle from exceeding unsafe

limits. };

end ProvideYawEnvelopeProtection;

operation GeneateSideslipCommand is

components: ;

inputs: TargetFlightPath, ActualFlightPath;

outputs: AutoSideslipCommand, ManualSideslipCommand;

description:

Involves the generation of sideslip commands to allow for decrab for

landings, performing coordinated turns and offsetting certain

asymmetries. };

end GeneateSideslipCommand;

operation LimitAutoSideslipCommands is

components: ;

inputs: AutoSideslipCommand;

outputs: LimitedAutoSideslipCommand;

74

description:
Limits the autopilot control autority and protects against failures

(in particular hardover or oscillatory failures) in the autopilot. };
end LimitAutoSideslipCommands;

operation GenerateSideslipCmdManualis
components: ;
inputs: ActualFlightPath, TargetntFlightPathNBManualSideslipCommand,

ManualModeEngaged;
outputs: ManualSideslipCommand;
description:

{ Involves the generation of a sideslip commandmanually (i.e., by the
crew) as a result of comparing the actual and desired flight path
(including attitudes). };

end GenerateSideslipCmdManual;

NOTE:Next to ops are generic and should, accordingly, appear in another
module. Cf. GenerateRollRateCommand (pg. 151) and

GenerateFlightPathCommand (pg. 127

operation MakeManualVsAutoFlightModeDecision is

components: ;

inputs: none;

outputs: ManualFlightMode, AutoFlightMode;

description: ;

end MakeManualVsAutoFlightModeDecision;

operation EngageManOrAutoOperation is

components: ;

inputs: ManualFlightMode, AutoFlightMode;

outputs: ManualModeEngaged, AutoModeEngaged;

description:

Involves the generation of a sideslip command automatically (i.e., by a

computer. };

end EngageManOrAutoOperation;

operation GenerateSideslipCmdAuto is

components: ;

inputs: TargetFlightPath, ActualFlightPath, AutoModeEngaged;

outputs: AutoSideslipCommand;

description:

end GenerateSideslipCmclAuto;

end ControlYaw;

* Module FlightControlSystemYawFunctions from pp. 179-193

module FlightControlSystemYawFunctions

operation FlightControlSystemYawContext is
components: PerformPilotFunctions, PerformCopilotFunctions,

FlightControlSystemYawFunctions, PerformAutoFlightSystemFunctions;
inputs: { Unclear - see pg. 179. } ;
outputs: YawActuatorPosition;
description: ;

end FlightControlSystemYawContext;

operation FlightControlSystemYawFunctions is
components: ProvidePilotYawInterface, ProvideCopilotYawInterface,

DisplayDirectionalTrimPosition, ResolveYawControlContentions,
GenerateYawActuatorCommand,EngineOutControlAugmentation,
MoveYawActuator,DisplayEnvelopeProtectStatus,
ProvideYawEnvelopeProtection, LimitAutoSideslipCommands;

inputs: PilotDirectionalTrimForce, PilotSideslipForce,
CopilotDirectionalTrimForce, CopilotSideslipForce, AutoDirectionalTrimCmd,
AutoSideslipCommand;
{ plus maybethe following due to ambiguity on pp. 179 versus 183: }

, ActualFlightPath, EngineThrust, ExternalForcesOnActuator,

SideslipAngle;

outputs: ;

description: ;

end FlightControlSystemYawFunctions;

operation ProvidePilotYawInterface is

components: ConvertForceToDisplacement, GenerateSideslipFeelForce,

TranslateSideslipDisplCmd, TranslateDirecTrimForceToCommand;

inputs: PilotSideslipForce, PilotDirectionalTrimForce;

outputs: PilotSideslipCmdFeelForce, PilotDirectionalTrimCmd,

PilotSideslipCommand;

description:

Converts the signal received from the pilot in the form of a force

exerted by the pilot's hand into a sideslip signal to be used by the FCS.

It also provides the pilot with a feedback force proportional to the

command sideslip angle.};

end ProvidePilotYawInterface;

operation ProvideCopilotYawInterface is

components: ;

inputs: CopilotSideslipForce, CopilotDirectionalTrimForce,

76

CopilotSideslipCommand, CopilotDirectionalTrimCmd;

outputs: CopilotSideslipCmdFeelForce;

description:

Provides the same function for the copilot as the

ProvidePilotYawInterface does for the pilot. };

end ProvideCopilotYawInterface;

operation DisplayDirectionalTrimPosition is

components: ;

inputs: DirectionalTrimPosition;

outputs: DisplayedDirectionalTrimPos;

description:

Displays the position of the directional trim actuator to the crew.};

end DisplayDirectionalTrimPosition;

operation ResolveYawControlContentions is

components: ;

inputs: PilotSideslipCommand, PilotDirectionalTrimCmd,

CopilotSideslipCommand, CopilotDirectionalTrimCmd;

outputs: ManualSideslipCommand, ManualDirectionalTrimCmd;

description:

Generated as a result of the assignment of the

GenerateSideslipCmdManual to both the pilot and copilot. };

end ResolveYawControlContentions;

operation GenerateYawActuatorCommand is

components: ;

inputs: LimitedSideslipCommand, ManualDirectionalTrimCmd, ActualFlightPath,

AutoDirectionalTrimCmd, ECAYawCommand;

outputs: DirectionalTrimPosition, DesiredYawActuatorPosition;

description:

Generates the sideslip actuator (rudder) position command based on the

limited sideslip command, directional trim command and the engine out

control augmentation command. };

end GenerateYawActuatorCommand;

operation EngineOutControlAugmentation is

components: ;

inputs: EnginesThrust;

outputs: ECAYawCommand;

description:

Monitors the engine thrust and generates a yaw command to assist the

pilot in compensating for an engine out situation. In particular it

helps relieve pilot workload in takeoff and go around which are high

pilot workload situations. };

II

end EngineOutControlAugmentation;

operation MoveYawActuator is

components: ;

inputs: DesiredYawActuatorPosition, ExternalForcesOnActuator;

outputs: YawActuatorPosition;

description:

Receives the desired yaw actuator position and attempts to move the yaw

actuator to that position. };

end MoveYawActuator;

operation DisplayEnvelopeProtectStatus is

components: ;

inputs: YawEnvelopeProtectStatus;

outputs: DisplayedYawEnvelopeProtectStatus;

description:

Results from the allocation of ProvideYawEnvelopeProtection to the FCS

with a probability of loss of function < 10E-6. YawEnvelopeProtection

has a proability of loss of function < I09E-9 and thus the crew has

responsibility for yaw envelope protection when not performed by the FCS,

hence the crew must be aware of the envelope protection status which

leads to this functional requirement. }

end DisplayYawEnvelopeProtectStatus;

operation ProvideYawEnvelopeProtection is

components: ;

inputs: SideslipAngle, LimitedAutoSideslipCommand, ManualSideslipCornmand;

outputs: LimitedSideslipCommand, YawEnvelopeProtectStatus;

description:

Monitors the commanded sideslip and the actual sideslip and modifies

the sideslip command to prevent the sideslip angle from exceeding unsafe

limits. };

end ProvideYawEnvelopeProtection;

operation LimitAutoSideslipCommands is

components: ;

inputs: AutoSideslipCommand;

outputs: LimitedAutoSideslipCommand;

description:

{ Limits the autopilot control authority and protects against failures

(in particular hardover or oscillatory failures) in the autopilot. };

end LimitAutoSideslipCommands;

{*** Pilot Yaw Interface, pp. 187-188 ***}

?8

operation ConvertForceToDisplacement is

components: ;

inputs: SideslipForce, SideslipFeelForce;

outputs: SideslipCommandDispl;

description:

Receives the pilot force and feedback feel force and generates a

displacement. };

end ConvertForceToDisplacement;

operation GenerateSideslipFeelForce is

components: ;

inputs: SideslipCommand;

outputs: SideslipFeelForce;

description:

Generates a force to feedback to the pilot which is an indication of the

commanded sideslip angle. };

end GenerateSideslipFeelForce;

operation TranslateSideslipDisplCmd is

components: ;

inputs: SideslipCommandDispl;

outputs: SideslipCommand;

description:

Translates the displacement (rudder pedal) to a sideslip command. };

end TranslateSideslipDisplCmd;

operation TranslateDirecTrimForceToCommand is

components: ;

inputs: DirectionalTrimForce;

outputs: DirectionalTrimCommand;

description:

Converts the physical displacement generated by the physical force

exerted by the pilot into a trim command for use by the FCS. };

end TranslateDirecTrimForceToCommand;

end FlightControlSystemYawFunctions;

?9

* Module ControlAerodynamicBraking from pp. 198-219, and AE diagrams

* pp. 218 - 219

module FlightControlSystem

object FlightControlSystem is

components: FlightControlComputer, Sp@edBrakeController,

HightLiftController, Displays, HightLIftSystem, RudderSystem,

SpoilerSystem, AileronSystem, ElevatorStabilizerSystem,

SidestickControllers, RudderPedals;

description:

The primary agent, along with Crew members, to execute flight control

operations };

end FlightControlSystem;

operation PerformAutoFlightSystemFunctions is

components: ;

inputs: ;

outputs: ;

description:

The AEAuto-FlightSystem ''Architectural Element"

end PerformAutoFlightSystemFunctions;

;

object class Computer is

components: ;

operations: ;

description: ;

end Computer;

object class Sensor is

components: ;

operations: ;

description: ;

end Sensor;

object class SurfaceActuator is

components: ;

operations: ;

description: ;

end SurfaceActuator;

object class Command is

components: HowActuated, AffectedAircraftComponents ;

8O

description:

The high-level class of control commands that are generated by either

the crew or flight control system. }

end Command;

{**** Control System Signal Transmission (F.C.S.I), Pg. 199 ****}

object Communicant is

components: Computer J Sensor J SurfaceActuator;

operations: ;

description: ;

{ One of the classes of objects between which data communications take

place. }

end Communicant;

object DataBus is

components: ;

operations: TransmitData(Communicant, Communicant, DataBus): boolean

description:

end DataBus;

{**** Control System Computation Requirements F.C.C.I), Pg. 223 ****}

let cml, cm2: Communicant;

db: DataBus

axiom (forall cml, cm2, db :

if TransmitData(cml, cm2, db)

then (db. Type = Electrical or db. Type = Optical) and

(db. Speed> MinimumDataComn_Speed)

end FlightControlSystem;

81

C Analysis of the Translation of ASCT into WSRSL

This section of the report contains a page-by-page analysis of the translation of ASCT into the

WSRSL requirements specification, the latter hereafter referred to as "the spec."

Page i: Preface. Introductory comments such as this can appear as comments in the top-

most module of the spec.

Page iii: Table of Contents. In general, tables of contents in textual documents are replaced

by the top-level roadmap available in the electronic browser.

Page 1:1.0 Introduction. More introductory comments

Pages 3-5:2.0 Requirements Generation. Some of the commentary appearing in this section

is appropriate to put in the top-level module commentary. Much of the commentary pertains to

the specific techniques used in the development of ASCT, which techniques are not applicable

to the WSRSL-developed document.

In general, "meta-commentary" about the development language itself, rather than about

the contents of a particular specification are not included in the specification itself but rather

in accompanying documents describing the WSRSL language and methodology.

Page 7:3.0 Excelerator/RTS Overview. Not applicable to the WSRSL spec.

Page 9:4.0 Advanced Flight Control System Requirements. Remarks made about pages iii

and 3-5 apply here.

Page 10: Figure I Organization o] Control Functions ... This is the top level of DFD,

which is browseable in DFD tool. In general, the WSRSL Browser allows the DFDs to be used

as a functional roadmap for the requirements specification, which is a significant advantage over

the paper-based ASCT document.

Page 11: Figure 2 Reports Generated The precise names of reports listed in this figure

are based on those produced by Excelerator, and are therefore not exactly applicable to the

WSRSL specification. In general, the hypertext capabilities of the WSRSL Browser allow an3"

number of "'reports" to be viewed, by establishing the appropriate document links. This is a

significant advantage of an electronic browser over a paper document.

Pages 1_,-13: Fly Mission DFD and descriptions. These and all other detailed DFDs are

represented in electronic, browseable form in the WSRSL spec. The textual process and dataflow

descriptions appear in the description fields of the formal object and operation definitions. As

noted above, the browseable configuration of the WSRSL spec permits the user to move freely

from graphical to textual descriptions, enhancing the connectivity of the document.

It is worth noting that there is a syntactic error in the data flow description on Page 13,

with respect to the DFD appearing on Page 12. Specifically, the name dataflow name "Mission"

appears in the DFD, whereas the corresponding name in the textual description is "Mission

Definition". Similar consistency errors occur elsewhere in ASCT. Since the ASCT DFDs were

produced by Excelerator, it is not clear just how these errors arose, since it is our understanding

82

that Exceleratorshouldgeneratedatadictionariesdirectlyfrom DFDs,therebyprecludingsuch
errors.At any rate, such errors should be impossible in any system where graphical depictions

are derived directly from formal definitions. This is the ultimate goal for the WSRSL browser,

which we plan to implement next year.

Page I4: Figure Mission.Analysis.l Mission Segments. In the formal WSRSL spec, what

appears in this figure is a graphical view of the Mission object. As described in our proposal

for the coming year, views are mapped formally to specification objects. Such mappings are

advantages in that they allow graphical depictions of objects to be generated formally from

object definitions. We hope to implement a prototype of the language support tool that will

allow formal specification of graphical components in a requirements specification document.

Page I5: Table 1. Analysis o] Mission Segments. This table is very interesting in terms of

what it indicates about the completeness of the ASCT document. As noted in Section 4 of the

report, the ASCT document, organized around a functional DFD description, lacks a formal

description of most of the major objects that are mentioned in the requirements statement. In

particular, the Mission Segments description presented in Table 1 is in fact a form of object

description. This is reflected in the WSRSL spec by the appearance of object Mission. What is

noteworthy about Table 1 is that it is one of very few explicit object definitions appearing in the

ASCT document. The component details of almost all other object definitions in the WSRSL

spec were gleaned from various textual "clues" found m ASCT requirements and supporting

tabular information.

Table 1 on page 15 contains a considerable amount of information, in a somewhat ad hoc

format. WSRSL was used to organize the information slightly more formally, by defining object

fields "control_action", "driver", and "control system requirement". However. these fields are

semantically comments, the text being copied directly from Page 15. A more formal and precise

decomposition of these requirements would involve further object/operation decomposition and

formal requirements specification. For example, the "control_system_requirement" for the Take-

Off phase of the mission is a rather long list of entities, the relationship of which to TakeOff is

not particularly clear. It appears likely that these requirements would be best specified formally

as preconditions to a TakeOff operation. Similar formal analysis of the rest of the "control

actions", "drivers", and "control system requirements" is in order.

Page i6: Table 2. Assignment o] Control Requirements to Functions. This is a somewhat

ad hoc assemblage of information that is factored into the WSRSL specification in a less ad hoc

manner. What is conveyed in Table 2 is the connection between requirements and specification

operations. In a WSRSL spec, this connection is made formally according to the module context

in which a requirements statement appears. Specifically, when a requirement is stated as a pre

or postcondition to an operation, then it is directly connected to that operation. When a

requirement is stated as a module invariant, then it is associated with all of the operations of
the module.

Page 17: Cntrl.Mission.Flight Req.List. This is a reasonably useful piece of information that

can be represented in the WSRSL spec in a number of ways. In the current WSRSL version of

ASCT, it is represented in two manners. First, an operation field "CMF" is defined that is used

to record the the names of requirements within the operations to which they apply. This style

83

of requirement reference could be carried out within the rest of the spec (but it is not done so

in the current draft).

The other representation of requirements relations is as thread of hyperlinks that connect

each group of requirements. These links are used within the browser to navigate from entities

to associated requirements and vice versa.

Another alternative to this organization of the top-level requirements list would organize

the modular structure of the WSRSL spec around requirements rather than functionally. This

organization would be inferior to the current functional organization, however, since it would

spread object and operation definitions across modules in a non-functional way.

Page 18: General Control Requirements (C.M.F.1). This is the first of the actual require-

ments statements appearing in ASCT. As described in Section 4, these requirements are factored

throughout the WSRSL version of the spec as object definitions, operation definitions, pre and

post conditions, and module axioms. Here in CM.F.1 the requirements make reference to the

handling quality criteria for the aircraft. In translating to a more formal WSRSL statement of

C.M.F.1, the ambiguous terms used to define handling quality must be formalized. For example,

in the statement "... without requiring exceptional pilot skill or strength", the "exceptional"

must be quantified, and "skill" and "strength" must be formally identified as attributes of a

pilot. Hence, we define a Pilot object with attributes Strength and Skill, provide some quantita-

tive (e.g., numeric) value for these attributes, and then state requirements about these attributes

formally.

It should be noted that detailed object descriptions of crew are missing from the original

ASCT document. The addition of such object definitions in the WSRSL document is essential

to the formalization of requirements.

The representation of C.M.F.1 in WSRSL in representative of one strategy for stating tem-

poral transitions. That is, the WSRSL statement of C.M.F.1 is representative of how similar

requirements throughout the WSRSL spec can be stated when the requirements express what

happens when a state of the aircraft changes. Specifically. the technique used is based on axioms

that use existential quantification

time: type ...

Mission: type ...

Aircraft: type ...

tl, t2: variable time

m: variable Mission

a: variable Aircraft

p: function[sometype -> boolean]

AI: axiom

if (exists tl, m : m. Time= tl and a. State. HandlingQuality

Page 85: Flutter Prevention Requirements (C.M.F.26). Regarding the statement "The air-

plane shall comply with ... FAR 25.629", in a fully formalized document, references to external

84

requirementssuchasFAR mustultimatelybeformallyrepresented.While this will requirea
potentiallyvery large effort, it is necessary in order to ensure that requirements are validatable.

Throughout ASCT, there are requirements of the form "It shall be shown by analysis of tests

..." Such statements can be considered a form of meta-requlrements in that they specify how

other requirements are to be met.

Page 87: Control Mission Flight DFD.

Page 88: Control Mission Plight DPD Component Descriptions. Since this is the top-level

DFD, it contains reference to several key top-level objects. As has been noted earlier, one of

the major deficiencies of operation-oriented dataflow analysis is the tendency to under define

system objects. This is most obvious at the highest level DFDs. Hence, in the WSRSL spec,

most of the objects defined on page 88 of ASCT appear in other object-oriented modules (e.g..

ActualFlightPath appears in module FlyMission). This reorganization of system objects into

object-oriented modules is the single largest structural difference between ASCT and the WSRSL
translation.

Page 105: ControlAerodynamicBraking DFD. Here and elsewhere in the document the use

of transforms labeled "Display..." are somewhat ad hoc. In general, if such transforms appear

explicitly anywhere in the specification, the)' should appear consistently throughout the DFDs

for all aspects of Mission control that are displayed to the end users (i.e., the crew). There are

certainly man)' aspects of mission control that are displayed to the crew that do not appear in

any ASCT DFD. The point is not to belittle the original document, but to point out the necessity

for completeness and consistency with regards to user interface aspects of the requirements

All alternate methodology for speci_'ing user interface components and requirements is that

discussed in the proposal for next year's project. Using this methodology, user interface aspects

are factored completely out of the abstract functional requirements specification, but still defined

formally to permit verification and validation.

Page 127: Generate Plight Path Command DFD. This is the first DFD in which the control

transform notation is used. It is not clear from the context of use, nor from the explanation of

control transforms in Appendix B, how the distinction between process versus control transform

is being exploited in the requirements at this point. In WSRSL, both control and process

transforms are represented as operations.

It is arguable that the difference between a specification and an implementation is the in-

ternal operational details of operations. While the distinction between a process transform and

control transform can be useful for modeling an executable prototype or implementation, the in-

terpretation of intra-operation behavior may well be considered outside the scope of a functional

requirements specification. This point is debated by researchers and practitioners in software

engineering. If the goal for a requirements specification is to make it more formal and verifiable.

we think it best to draw the line at the internal behavior of operations. That is, this operational

behavior should not be specified via the process description techniques described in Appendix

B of ASCT.

The previous paragraph is not intended to indicate that we do not believe in the concept of

a wide spectrum language that can be used for both specification and design, just that the line

should be drawn a$ove operational details in a requirements specification.

85

Operationalmodels,suchasthosepresentedin AppendixB, cancertainlybe usefulasa
requirementsspecificationis refinedto a systemdesignand implementation.In the specific
contextandscopeof ASCT,however,it is not clearthat the levelof abstractionrepresented
withinprocessversuscontroltransformsprovidesanytangiblesupportfor specifyingrequire-
ments.This is bornout by thelackof detailedcontrolinformationthat appearsin the ASCT

within the requirements themselves. That is, the detailed discussion in Appendix B of how to

implement control transforms does not appear to be used anywhere in the body of the document.

Page I1t9: PlightControlSysteraPitchFimctions. This first DFD in which the use of Architec-

tural Elements appears. It is our understanding based on the description given in Appendix C,

that Architectural Entities represent essentially objects in WSRSL.

One of the long-standing deficiencies of requirements expressed in the DFD-based structured

analysis models was the second-class treatment of object descriptions. As noted in Section 4 of

the report, this deficiency was addressed in requirements specification languages such as RSL,

in which objects and operations are given equal treatment. Hence, a requirements specification

should be viewed from both an operation-oriented perspective and an object-oriented perspective.

The other important requirements concept that appears to be addressed by the use of AE's

is the specification of the agent of an operation. As described in the main body of the report,

an agent is formally nothing more than an object.

The formal semantics of an agent can be represented as a higher-order agent-evaluation

function that takes as inputs (a) the agent object (b) the operation that the agent is to execute,

and (c) the inputs to the operation. In this sense, and agent can be considered an meta-operation

- an operation that performs another operation.

In order to effect a full}, formal representation for architectural entities in WSRSL, the

following idiom is used,

object SomeAE is

components: ... ;

operations : Per f ormSomeAEFunct ions ;

description:

The object definition that corresponds to an ASCt architectural entity

end SomeAE

operation PerformSomeAEFunctions is

components: ... ;

inputs: ... ;

outputs: ... ;

agent: SomeAE;

description: ;

The operation performed by the SomeAE.

end PerformSomeAEFunctions

While this idiom is obvious, it is important since it defines formally how the values of an AE

are produced. The ASCT use of AE's suggests an object that produces values, which cannot be

formally represented, since only operations (based on EHDM functions) can produce values

The existence of AE's relates to a subtle conceptual point that arises frequently in formalizing

requirements specifications. Viz., what is the difference between a behavior producing o$ject and

86

the ol_eratlon that denotes the behavior it produces. Consider, for example, a Pilot. What is

the difference, conceptually, between the Pilot as an object and a Pilot as a function? Clearly,

a pilot can be viewed as an object, with components, such as specific anatomical parts, that

may be relevant to a requirements specification. Equally clearly, a Pilot can be viewed as a

operation, since the behavior of the pilot produces and uses values that are the outputs to and

inputs from other operations in the complete operational aircraft system.

The answer in the WSRSL version of ASCT is to view entities such as pilots as both ob-

jects and operations, using the naming idiom illustrated above. This provides the fully formal
representation of an Architectural Element as used in ASCT.

Page 13J Flight Control Sys Pitch Functions DFD. This DFD is the first occurrence of

operations of the for "ProvideXXXInterface", where "XXX" is some crew member. Operations

of this nature suggest to a limited extent what the end user (i.e., human) system interface should

be. However, there is much more to the human-system interface than feedback operations such

as these. In fact, we argue that consideration of the human interface is a critical aspect. As

noted earlier, this topic is discussed in the proposal for the follow-on project.

Page 134: Process descriptions for Flight Control S!ts Pitch Functions. The description of
DisplayPitchEnvelopeProtectStatus is somewhat curious ...

Page 157: Process descriptions for Flight Control S$1s R.oll Functions. See comments above

on Page 134.

Page 199: F.C.S.I This is another example of a requirement stated in prose that leads to the

definition offurther objects and/or operations than were defined explicitly in ASCT. Specifically.
the objects Communicant and DataBus were added.

87

fUASA
Report Documentation Page

I. Repol! No. 2. Government Accession No.

NASA CR - 187522
4. TiUu and SubliUe

Structured Representation for Requirements
and Specifications

7. Aulhm(sl

Gerald C. Cohen

Gene Fisher
Deborah Frincke
Dave Wolber

9. Perfotmmg Orgarlizdt0un Name end Address

Boeing_Military Airplanes
P.O. Box 3707, M/S Tj-24

Seattle, Wash 98124-2207

12. Sponsor,1U' AUgHt ¥ Name and Address

NASA Langley Research Center
Hampton, VA 23665-5225

15. Supptmmenlmy Nolas

3. Recipien|'s Catdlog No.

5. Repof; Dau_

July 18, 1991

6. Perfom,ng Oiganizal_on Code

8. Performing Ol_la,_iza;ion Report No.

/0. Wolk UHi! No.

505-64-10-07

| I. COIIIIICI OI Gram No.

NAS1-18586

13. TYI_ uf f"lupof! =Hd Pellud Covufed

Contractor Report

14. Sponsoring Auency Co,de

Langley Technical Monitor: Sally Johnson

Task 2 Report

16. Abslf|¢l

This document was generated in support of NASA contract NAS1-18586,

Design and Validation of Digital Flight Control Systems suitable for Fly-By-

Wire Applications, Task Assignment 2. Task 2 is associated with a formal

representation of requirements and specifications. In particular, this

document contains results associated with the development of a Vlde-Spectrum

Requirements Specification Language (WSRSL) that can be used to express system
requirements and specifications in both stylized and formal forms. Included

with this development are prototype tools to support the specification

language. In addition a preliminary requirements specification methodology

based on the WSRSL has been developed. Lastly, the methodology has been

applied to an Advanced Subsonic Civil Transport Flight Control System.

Kmy WoIlli I_uggutlgU by AUI|tUIIW|I f 1_. Ol$lllbUItgn Slalulllml|l

Formal Reouire_ents and Specification I Unclassified - Unlimited
Wide-Spectrum Requirements Specification Lbnguage (WSRSL)
WSRSL Parser Dataflow Too] I

WSRSL Browser Hypertext J Subject Category 61

